

Numerical simulation of the Lagrangian transport of aerosols of various genesis in urban conditions

A.I. Varentsov^{1,2,3} (aivarentsov98@gmail.com), V.M. Stepanenko^{1,2,3}, E.V. Mortikov^{1,2,3}

Lomonosov Moscow State University

¹Research Computing Center, ²Faculty of geography – Department of meteorology and climatology

³Moscow Center of Fundamental and Applied Mathematics

Lagrangian model physics

Newton's second law

+ | _

Medium resistance force

Buoyancy force

Equations of motion

$$\frac{\mathrm{d}\boldsymbol{u_p}}{\mathrm{d}t} = \frac{\boldsymbol{g}(\rho_p - \rho)}{\rho_p} + F_D(\boldsymbol{u} - \boldsymbol{u_p})$$

$$\frac{\mathrm{d}\boldsymbol{x_p}}{\mathrm{d}t} = \boldsymbol{u_p}$$

 ho_p – particle density ho – air density d_n – particle diameter u – wind velocity

 u_p – particle velocity

 $oldsymbol{g}$ – gravitational acceleration

Turbulence parameterizations

Random displacement model

Oth order stochastic model

Langevin model

1st order stochastic model

Interaction with surfaces

Complex geometry mode

Simple geometry mode (cubic)

Particle decay

Model verification

Data: measurements of vertical profiles of particle concentrations during dust and sand storms in Central Asia

Simulations: particle transport in urban conditions

Bioaerosols (SARS-CoV-2) in a series of urban canyons

Perspectives

Implementation in the LES model as an external module in parallel to Eulirian approach

Calculations with realistic building geometries

Results

The results of the development of a numerical model of the Lagrangian transport of particles are presented:

- The model implements stochastic parametrizations of the 0th and 1st orders, which allows to choose between them depending on the task and input data
- The model has been verified on analytical solutions for both light and heavy particles, including taking into account the influence of particles on atmospheric stratification
- The model is verified on field measurements of dust and sand particles concentrations data
- Experimental calculations have been successfully carried out for idealized types of urban geometry with different atmospheric conditions
- The Lagrangian particle transport module was developed and implemented in the hydrodynamic RANS/LES/DNS model, successful test calculations were carried out

Publications on the previous results of the work:

https://doi.org/10.1088/1755-1315/386/1/012045

https://doi.org/10.1088/1755-1315/611/1/012017