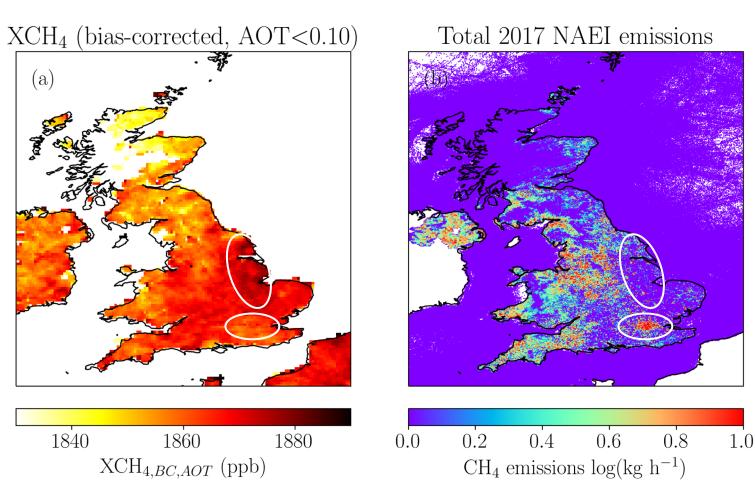


How useful are TROPOMI XCH₄ measurements for the UK?

Using CAMS methane products to understand UK CH₄ spatial patterns measured by TROPOMI

Eric Saboya¹, Anna Agusti-Panareda², Heather Graven¹

May 2022


¹Department of Physics, Imperial College London, UK

²ECMWF, UK

UK TROPOMI XCH₄ spatial patterns differ from CH₄ emission inventory


- 2018-2020 TROPOMI retrievals have poor UK data coverage with a retrieval success rate of ~2.9 %
- 2018-2020 averaged TROPOMI XCH₄ UK gradients differ from UK National Atmospheric Emissions Inventory (NAEI) CH₄ emission gradients
 - High CH₄ emissions over London but low XCH₄ observed
 - Low CH₄ emissions over East UK but high XCH₄ observed

Fig. 1 (a) 2018-2020 averaged TROPOMI XCH₄ bias-corrected operational product. (b) UK NAEI 2017 CH₄ anthropogenic emissions

CAMS atmospheric methane column forecasts and reanalysis datasets

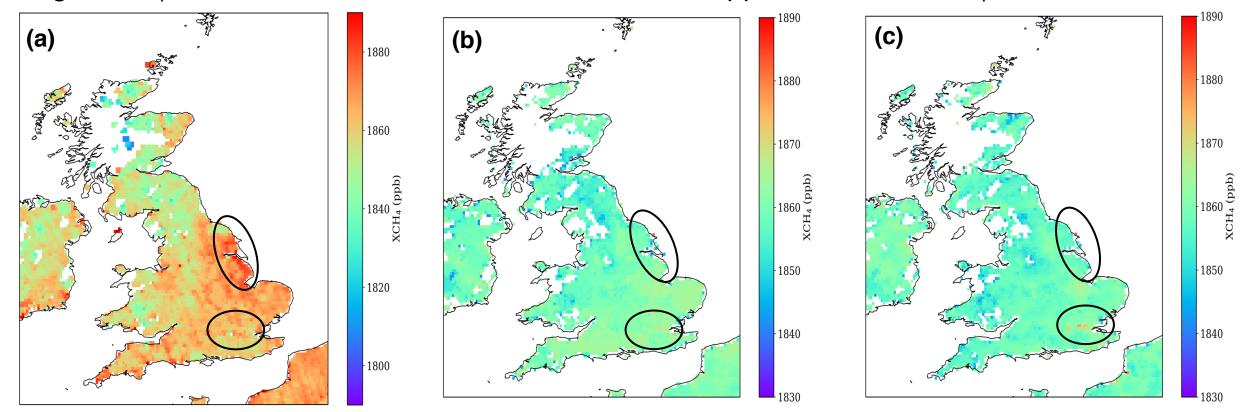
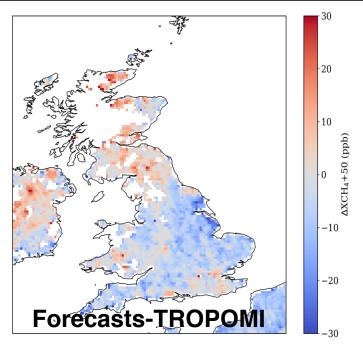

- CAMS (Copernicus Atmosphere Monitoring Service) models global atmospheric XCH₄ composition using a data assimilation approach
- Reanalysis EGG4 XCH₄ CAMS product: previous forecast combined with ground-based measurements and atmospheric model to provide an updated state of atmosphere
- Forecast XCH₄ CAMS product: previous forecast, satellite measurements, emission inventories and atmospheric model used to determine evolution of XCH4 over the next 5¹⁷⁹⁰ days
- Negative global bias in CAMS XCH₄ compared to TCCON (Ramonet et al., 2019) means we adjust by +50 ppb

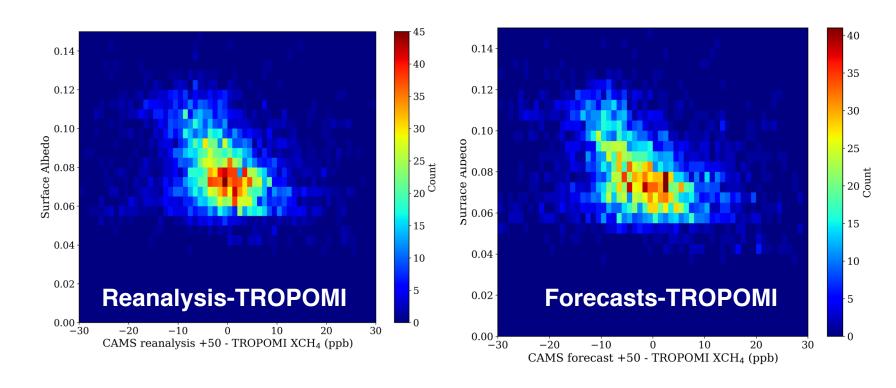
Fig. 2 15 Feb. 2019 12:00 CAMS XCH₄ (a) reanalysis and (c) forecast for over the UK


Homogenous spatial patterns over the UK in TROPOMI & CAMS XCH₄

- Comparison of average over 8 days between 2018-2020 that have UK-wide TROPOMI XCH₄ pixels with CAMS XCH₄ products
- London-southeast XCH₄ gradient of ~5 ppb in CAMS reanalysis and ~10 ppb in forecasts
- High XCH₄ feature in east UK in TROPOMI does not appear in CAMS CH₄

Fig. 3 (a) TROPOMI **(b)** CAMS reanalysis **(c)** CAMS forecast XCH₄ averaged using the 8 TROPOMI observations from 2019-2020 that have UK-wide coverage

Larger TROPOMI XCH₄ values are correlated with higher surface albedo



O.14

O.12

O.10 peque of the second of the

- Large negative CAMS-TROPOMI XCH₄ values linked to higher surface albedo across the UK
- Surface albedo does not explain the lack of observed XCH₄ gradient between London and the southeast
- Most CAMS-TROPOMI biases are ±5 ppb

Conclusions

- Low number of TROPOMI retrievals with UK XCH₄ data coverage
- UK TROPOMI XCH4 spatial patterns differ from UK CH₄ emissions inventory
- TROPOMI instrument precision (~11 ppb) likely not sufficient for discerning UK XCH₄ gradients
- CAMS-TROPOMI XCH₄ differences correlate with surface albedo