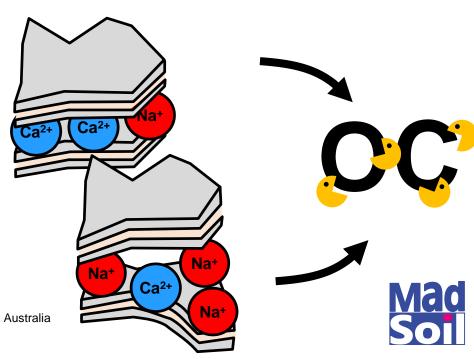
How soil sodification and pH restrict microbially mediated organic carbon turnover and aggregate formation: An artificial soil microcosm study


Janosch Fiedler¹, Anne Boehm¹, Franziska Bucka¹, Michael Dannenmann², Noelia Garcia-Franco¹, Jincheng Han², Christian Poll³, Vanessa Wong⁴, Steffen Schweizer¹ (steffen.schweizer@tum.de)

@GeoSchweizer

- 1) Technical University of Munich, TUM School of Life Sciences, Soil Science, Freising, Germany
- 2) Karlsruhe Institute of Technology, Institute of Meteorology and Climate Research (IMK-IFU), Garmisch-Partenkirchen, Germany
- 3) University of Hohenheim, Institute of Soil Science and Land Evaluation, Soil Biology, Stuttgart, Germany
- 4) Monash University, School of Earth, Atmosphere and Environment, Clayton Vic., Australia

Research questions

Disentangle the effect of sodicity and pH on soil aggregation and microbial turnover of carbon

- 1. Does sorbed Na⁺ inhibit microbially mediated structure formation and microbial carbon turnover?
- 2. Does the formation of water-stable aggregates interfere and affect C turnover?

Mineral components

- 2:1 montmorillonite clay mineral
- Mixed with quartz grains

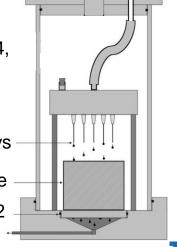
Sand	Silt	Clay	Slurry
(%)	(%)	(%)	(%)
30	38	30	2

Organic components

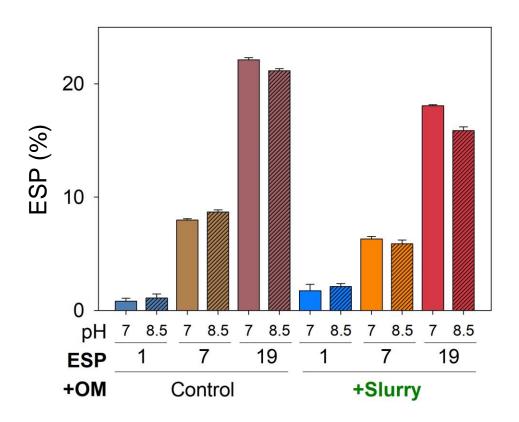
- Cattle slurry ground <200 µm with C/N of 11.5
- Microbial inoculate: Cambisol (pH_{H20} 7.5, Germany) and a Calcaric Solonchak (pH_{H20} 9.3, Spain)

Incubation setup

Control treatments without slurry


Treatment	ESP low	ESP mod	ESP high	ESP low + slurry	ESP mod + slurry	ESP high + slurry
pH 7					3	
pH 8.5	A	A P	THE STATE OF THE S	A	F	

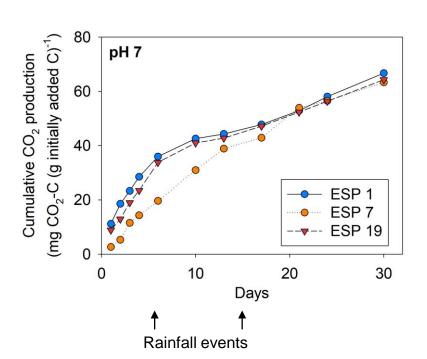
CO₂ production measured at 1, 2, 3, 4,
6, 8, 11, 14, 18, 24, 30 days

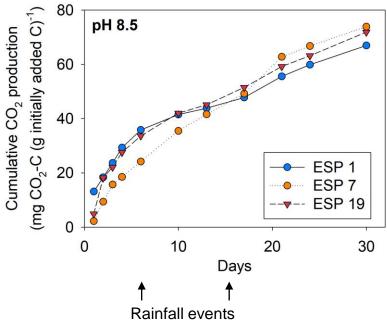

Rainfall events (5 mm) at 7 and 15 days

- Soil core
- Ceramic plate at pF 2.2
- Collection of leachate

(Poll et al. 2013)

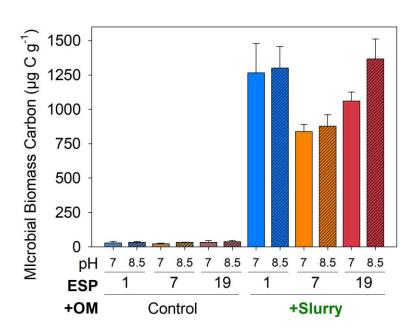
Exchangeable cation composition

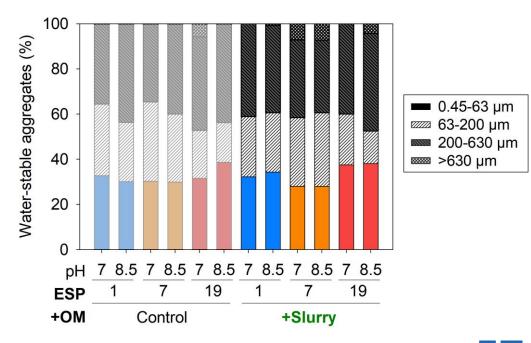



- Washed 3x with NaCl/CaCl₂ solutions at ionic strength of 60 mM
- CEC of 16 cmol_c kg⁻¹ on average
- Low, moderate and high sodicity at pH 7 and 8.5 as adjusted

CO₂ production over time

CO₂ from ESP 1 highest at beginning,
ESP 7 delayed, ESP 19 catching up


 Final CO₂ production slightly higher at pH 8.5

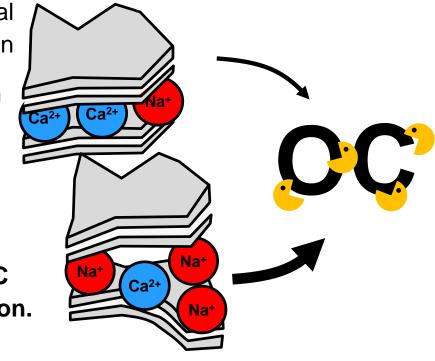


Microbial biomass and aggregation

Least MBC at ESP 7

Largest aggregates at ESP 7

Conclusion



@GeoSchweizer

- Moderate sodicity (ESP 7) delayed microbial decomposition but did not affect aggregation
- High sodicity (ESP 19) led to mineralization in a similar range as treatment with low sodicity (ESP 1) due to hampered aggregate formation

Depending on the loading of Na⁺, sodicity acts differently on microbial turnover of OC and its relationship with aggregate formation.

