

Geochemical monitoring of the geothermal reservoirs using a high-temperature downhole sampler

Gunnar S. Kaldal¹, **Deirdre Clark**¹, Bjarni S. Gunnarsson², Iwona Galeczka¹, Ingólfur Ö. Þorbjörnsson¹, Steinþór Nielsen¹, and Ásgerður K. Sigurðardóttir³

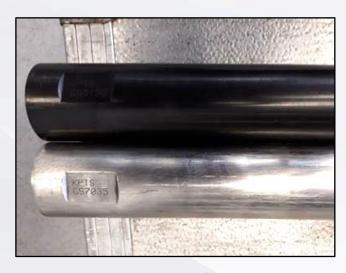
¹ Iceland GeoSurvey (ÍSOR), ² Verkís, ³ Landsvirkjun - Iceland

EGU 2022

Why downhole sampling?

Examples of corrosion and scaling issues

Clogged holes in liner from well in N-Iceland

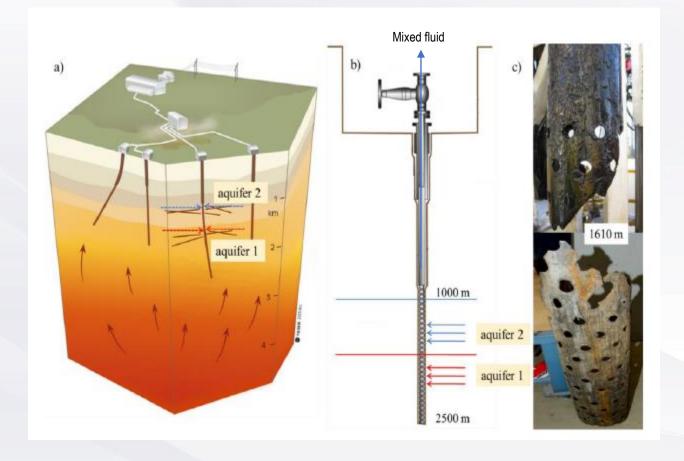


Corroded liner due to mixing of fluids from two feed zones

ÍSOR's spinner tool damaged after logging a new well to 2350 m depth

Logging tool came black out of the well

Hydrogen attack leads to diminished material properties



Why downhole sampling?

- Lack of knowledge about fluid-properties of distinct aquifers feeding a singular well in hot and super-hot geothermal fields leads to long term and high-cost geothermal utilization problems with surface and downhole installations (liner corrosion), and increased greenhouse gas emissions.
- Optimised casing design, requires knowledge on fluid composition at depth and therefore an extension of the P-, T- range at which existing samplers are enabled to collect fluid samples.
- High-temperature wells: Temperatures are typically around 200-300°C
- Ultra-high-temperature wells: Temperatures can be much higher, 400-550°C

Why design a new sampler?

Types of samplers:

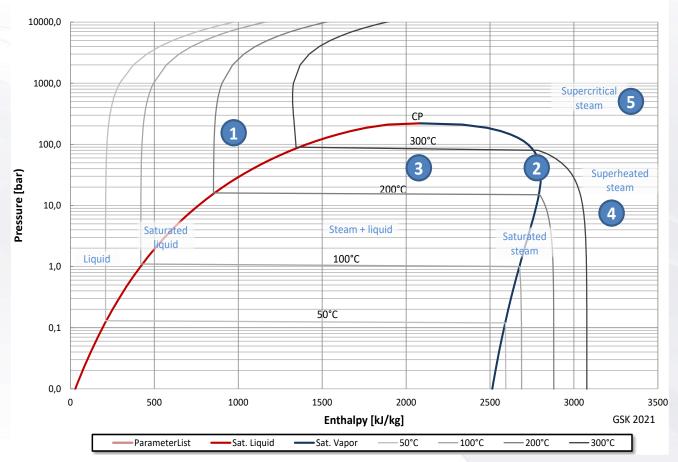
- Positive displacement samplers
- Vacuum samplers
- Flow-through samplers
- Pumps
- U-tube

Flow through samplers from Thermochem and Kuster can sample fluids up to 350 °C

→ Great interest in sampling fluids at depth at that are greater than 350 °C

Kuster

Thermochem



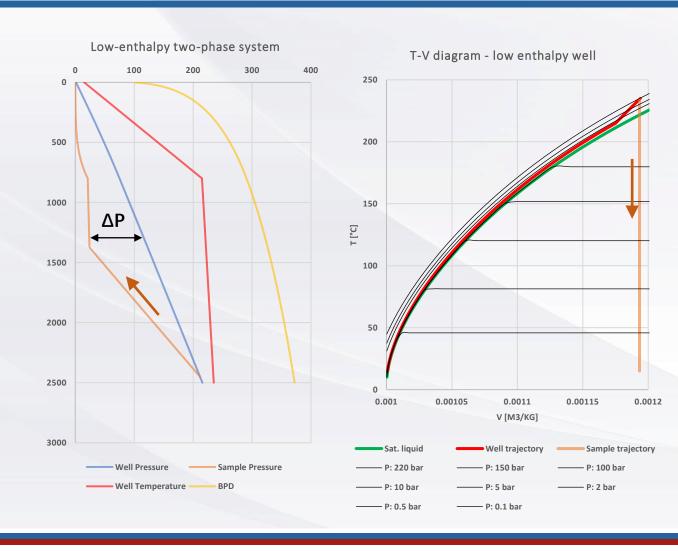
Sampling Scenarios in HT- to super-HT wells

Pressure-Enthalpy Plot for Water

- 1. Liquid (low-temperature or saturated liquid)
- 2. Steam (high-temperature saturated steam)
- 3. Two-phase (high-temperature above flashing zone)
- 4. Superheated (one phase steam at all depths within the well)
- 5. One-phase supercritical (one phase steam at all depths within the well)

Pressure of Contained Sample

Design basis and assumptions:

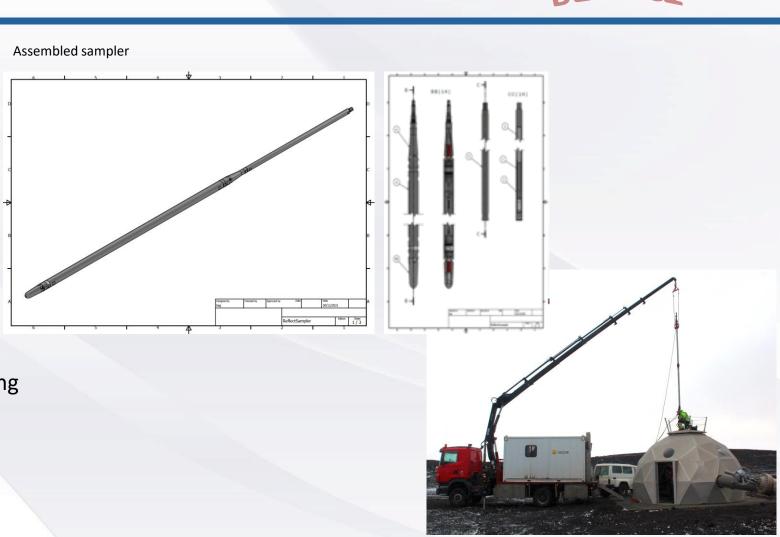

- Sample taken at a certain depth and sample pulled out of the well
- Pressure inside the sample bottle calculated on its way up the well
- Differential pressure is the difference in P_well and P sample

Assumption 1: No NCGs in the fluid – only water

 How does the presence of NCGs effect the pressure conditions?

Assumption 2: Thermal equilibrium between the sample and the well fluid at all depths

Assumption 3: The thermodynamic process inside the sample bottle when it is pulled out of the well is isochronic, i.e. happens at constant specific volume [m3/kg]


Current status – Design and Prototype Build

- ✓ Sampler design complete
- Sampling volume: >1 Liter
- Ranging temperature limits
 - 230°C Viton o-ring seals
 - 300°C Kalrez o-ring seals
 - Up to 500°C metal-to-metal seals

Next Steps:

- Prototypes and materials
- Prototype built and ready for in situ testing

Thank you for your attention!

www.reflect-h2020.eu

www.isor.is

gunnar.skulason.kaldal@isor.is, deirdre.clark@isor.is

The content of this presentation reflects only the authors' view. The Innovation and Networks Executive Agency (INEA) is not responsible for any use that may be made of the information it contains.

