Molecular and Metallic ions in the magnetosphere: ISSI team preliminary results

```
M. Yamauchi<sup>1</sup>, I. Dandouras<sup>2</sup>, I. Mann<sup>3</sup>, S. Haaland<sup>4</sup>, P. Wurz<sup>5</sup>, J. Plane<sup>6</sup>, D. Kastinen<sup>1</sup>, T. Gunnarsdottir<sup>3</sup>, A. Yau<sup>7</sup>, S. Christon<sup>8</sup>, L. Kistler<sup>9</sup>, Doug Hamilton<sup>10</sup>, Yoshufumi Saito<sup>11</sup>, Shigeto Watanabe<sup>12</sup>, and Satonori Nozawa<sup>13</sup>
```

```
1 IRF, Kiruna, Sweden; 2 IRAP, Toulouse, France; 3 UiT, Arctic U. of Norway, Tromsø, Norway 4 U Bergen, Norway; 5 U Bern, Switzerland; 6 U Leeds, UK; 7 U Calgary, Canada; 8 Focused Analysis and Research (FAR), USA; 9 U New Hampshire, USA; 10 U Maryland, USA 11 ISAS, Japan; 12 Hokkaido Information U, Japan; 13 Nagoya U, Japan
```

Poor knowledge of magnetospheric ions for m/q>20

H⁺, He⁺⁺, He⁺, O⁺ (N⁺): many works with may missions

- (1) N₂⁺, NO⁺, O₂⁺: only few dedicated instruments
 - cold ions < 50 eV (DE-1, Akebono, e-Pop) for M<40
 - hot ion > 10 keV ions (DE-1, CRRES, POLAR, but no open data ...)
 - energetic ions ≥100 keV (CRRES, POLAR, AMPTE, Geotail ...).
- (2) high-charge state ions (e.g., O⁶⁺, Fe¹²⁺): very few dedicated instrument
 - energetic ions ≥100 keV (CRRES, POLAR, AMPTE, Geotail ...).
- (3) low-charge state metallic (non-volatile, e.g., Fe⁺) ions: no dedicated instrument
 - Moon missions as the source (Kaguya for 0.01-30 keV and LADEE for cold)

(however) non-dedicated instruments sometime detects molecular/metallic ions

- hot ions of 0.01-10 keV range (Arase, Cluster/CIS, POLAR, MMS)
- energetic ions ≥100 keV (Cluster/RAPID>400 keV, WIND).

By combining these patchy and incomplete data (database construction), we found several features that indicate sources of these heavy ions. = **ISSI objective**

"Very heavy" ion has its own importance

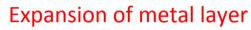
Si⁺, Fe⁺ O⁶⁺. Fe¹²⁺

 N_2^+ , NO^+ , O_2^+

from high-latitude

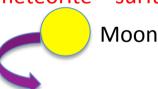
 N_2^+ , O_2^+ , Si^+ , Fe^+

Solar wind – magnetosphere interaction

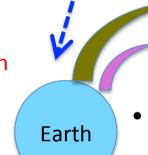


directly from SW

Atmospheric evolution M-I coupling

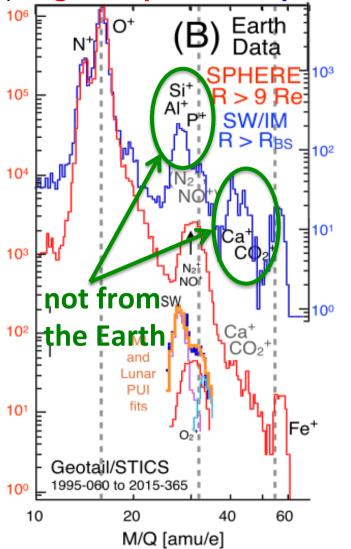

Ablation of meteorites/debris

Solar wind – surface interaction Micrometeorite – surface interaction



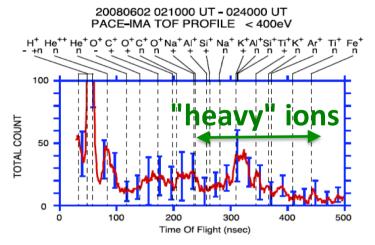
- exospheric: Ne⁺, Na⁺, K⁺, Ar⁺
- sputtered by SW and ionized:
 Si⁺, CO⁺/N₂⁺, Na⁺, K⁺, Ca⁺, Fe⁺

- reflected SW Fe⁺
- ⇒ All are picked up to > 30 keV

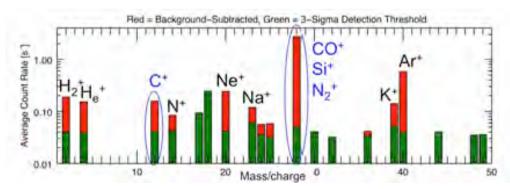

from sub-auroral **N₂+, O₂+**Ionospheric chemistry/physics
M-I coupling

Problem is source of low-charge state:

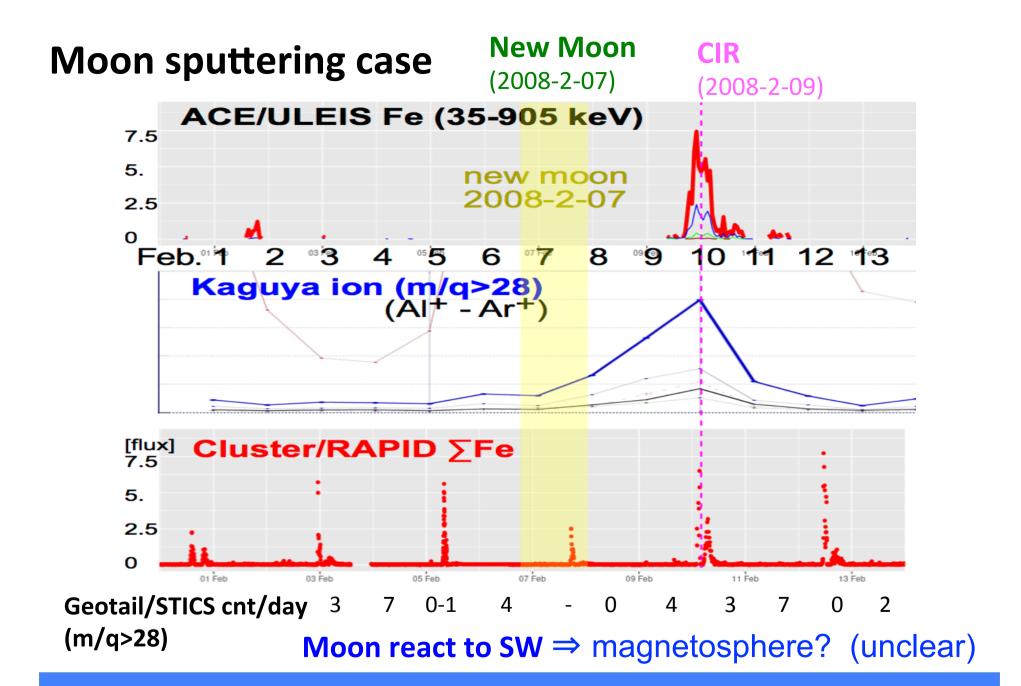
- Moon vs. high-latitude?
- metal layer/space debris contribution?
- How much from low-latitude?


Low charge-state energetic ions

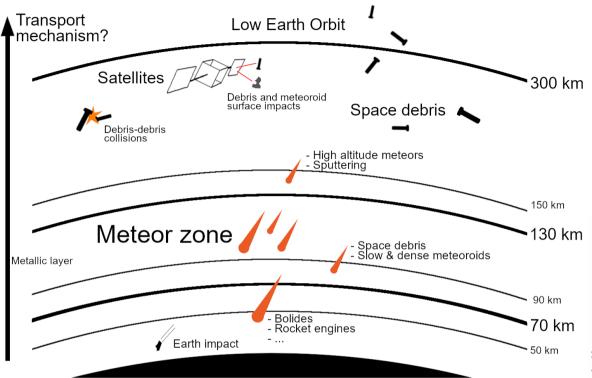
(magnetosphere vs upstream)


Moon source (pickup)?

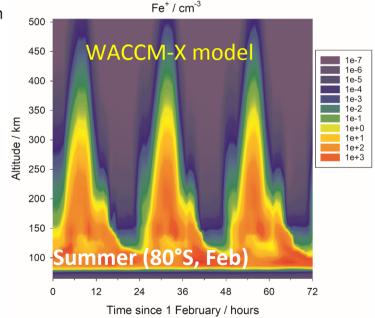
Sputtered ion (< 400 eV) from Moon



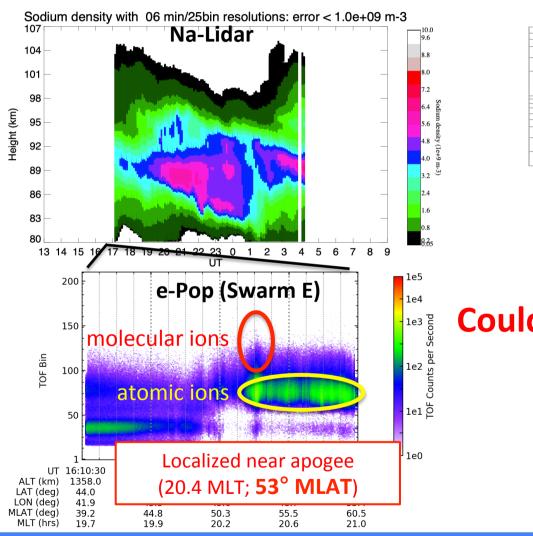
Kaguya data (Saito et al, 2010 fig32)

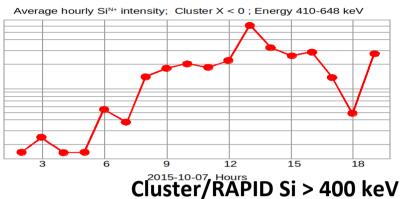

Exospheric cold ion at Moon

LADEE data (Halekas et al, 2015 fig3)



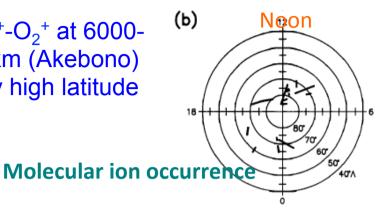
Relation to meteor and space debris (model)



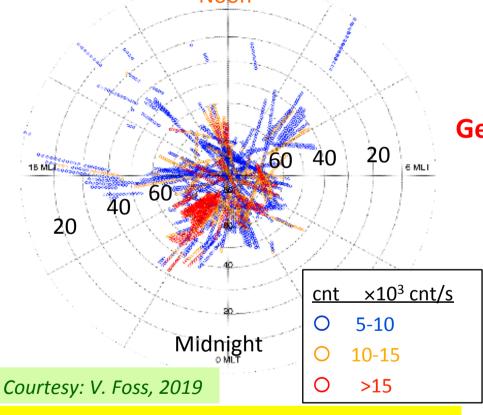

Modeled meteor-ablated Fe⁺ (Wu et al., 2021)

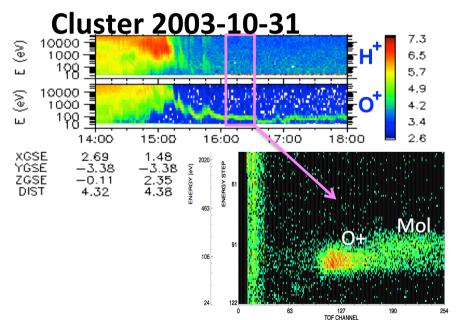
- Estimate based on metallic layer observation
- Daily transport > 500 km (summer only)
- ⇒ may reach magnetosphere during major storm
- Mass dependent (Mg⁺ is lifted more)
- Space debris origin ⇒ too low altitude (but Al+ may reach...)

Relation to sodium layer and low-latitude source: 2015-10-07 CME event


←→ Lidar

Could reach magnetosphere?


Yes, some of them may reach the magnetosphere



 N_2^+ -NO+-O₂+ at 6000-10000 km (Akebono) = only high latitude

Generally only from high latitude, e.g.,

low-cnt events = extend to low latitudes high-cnt events = only high latitudes

Recommendation

Data only suggests "possibility" of interpretations, but not conclusive.

- ⇒ What we need in future?
- (1) Dedicated Instrument in future missions/observations
 - magnetospheric mission including Moon gateway flight
 - ionospheric mission to cover 150-1000 km with heavy ion capability
 - simultaneous ground based observation of metal layer and outflow
- (2) Modeling? (but input data are not good quality yet)
- (3) more we are discussing