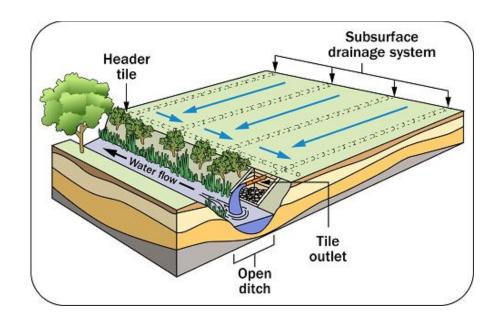


COMPACT FILTER SYSTEM FOR MITIGATING PHOSPHORUS LOSSES FROM AGRICULTURAL DRAINAGE DISCHARGE

Goswin Heckrath, Lorenzo Pugliese


Background

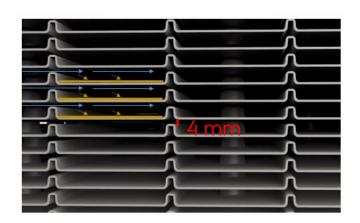
Phosphorus losses from artificially drained agricultural land can locally contribute to

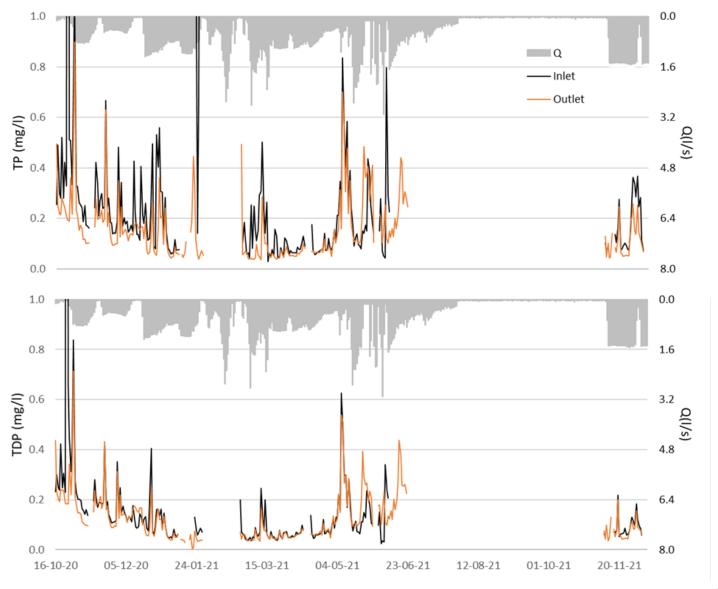
surface water eutrophication

Subsurface drainage systems

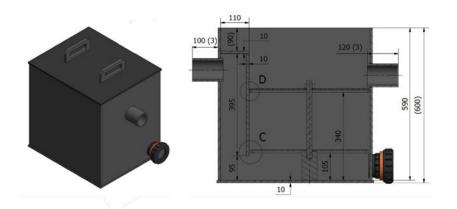
- Transform poorly drained soils into productive croapland
- Accellerate and concentrate water flow spatially

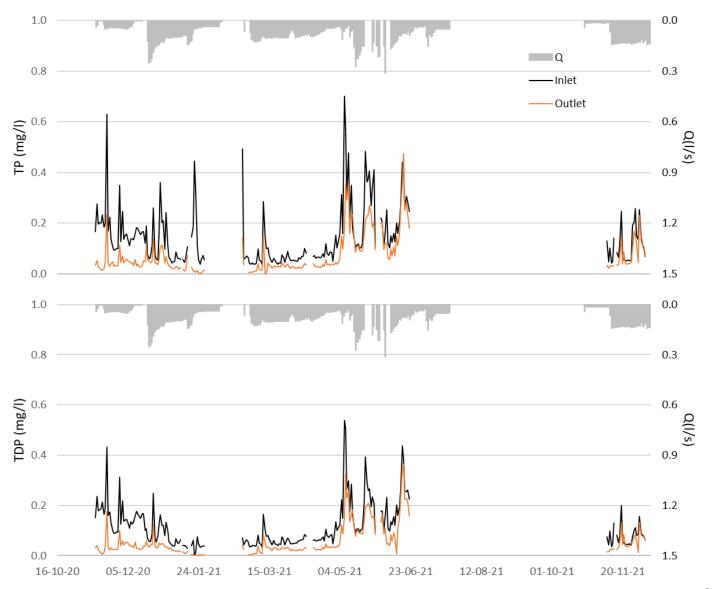
Currently, 50% of the agricultural land in Denmark and MidWest USA are artificially drained (Møller et al. 2018; Song et al. 2021)


System design



Sediment filter





Reactive filter

Results sediment filter

Month	Q	TP	TDP	PP	SS
		Removal	Removal	Removal	Removal
	(m^3)	(%)	(%)	(%)	(%)
okt-20	613	30	23	56	73
nov-20	1299	31	16	75	79
dec-20	1798	28	2	75	76
jan-21	2133	48	20	75	66
feb-21	1825	35	16	67	49
mar-21	3245	31	10	69	72
apr-21	1904	13	2	60	72
maj-21	2842	6	-7	42	63
jun-21	2398	-73	-155	45	75
nov-21	2646	27	14	45	64
dec-21	3529	5	-7	2	53

Results reactive filter

	Q	TP	TDP	PP
Month		Removal	Removal	Removal
	(m³)	(%)	(%)	(%)
nov-20	59	76	79	14
dec-20	225	58	61	18
jan-21	214	72	72	79
feb-21	27	82	68	72
mar-21	272	58	58	68
apr-21	190	55	57	28
maj-21	284	30	29	15
jun-21	209	23	33	-140
nov-21	254	35	33	35
dec-21	404	12	23	-57

Conclusions and perspectives

- Compact filter systems have shown good potential for removing particulate-bound and dissolved P
- Both sediment and spent filter material can potentially be recycled on agricultural fields as soil amendment
- Technically challenging to develop a filter system with large hydraulic capacity and high P removal efficiencies
- Problems with upscaling were observed in DK systems primarily in connection with particulate-bound P

- Improved sedimentation (physical and/or chemical) and overall P removal efficiency
- Study of P transformations under varying redox conditions and drainage flow characteristics

Thank you

Contacts:

Lorenzo.Pugliese@agro.au.dk goswin.heckrath@agro.au.dk

Recent projects:

NuReDrain (https://northsearegion.eu/nuredrain/) - Filter systems for nutrient removal from agricultural waters

FosLav (https://projekter.au.dk/foslav/) - Compact filter systems for phosphorus in drainage water from high and low soil

