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ABSTRACT
Land surface curvature (LSC) is a basic attribute of topography and influences local effects of 
gravitational energy and surface material transport. However, the calculation of LSCs based on 
triangulated irregular networks (TINs) has not been fully studied, which restricts further geoscience 
studies based on TIN digital elevation models (DEMs). The triangular facets and vertices of a TIN are 
both expressions of the land surface; therefore, based on their adjacency relationship, the LSCs can 
be calculated. In this study, we propose a mathematical vector framework for LSC calculation based 
on TINs. We define LSCs from the perspectives of the curvature tensor, slope and normal contour 
direction vectors, and then provide the calculation operators for LSCs based on both TIN triangular 
facets and vertices. Next, based on a mathematically simulated surface, we find that the TIN-based 
method exhibits similar effects on the scale as the grid-based methods and very low error 
sensitivity. In addition, based on different real landform cases with various data sources, we 
perform experiments involving land surface concavity–convexity and hillslope unit classification 
by using the TIN-based method. The results show that the TIN-based method can enhance the 
performance of TINs in landform classification over grid-based DEM methods. The proposed 
mathematical vector framework for LSC calculation can improve other geoscience studies based 
on TINs.
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1 Introduction

The concept of curvature, originally derived from 
mathematics, is typically used to quantify the degree 
of bending of a surface or a line (Wilson 2018). In 
geoscience studies, curvatures specifically refer to 
land surface curvatures (LSCs), which reflect charac
teristics of land surface structures and morphologies 
in different directions (Minár, Evans, and Jenčo 2020). 
The system of LSCs has been developed and success
fully applied in geomorphology, physical geography 
and geology, environmental sciences, hydrologic pro
cesses, remote sensing, ecology, soil science, etc (Lv 
et al. 2017; Xiong et al. 2021).

Krcho (1973) proposed the general theory of LSC 
from a gravitational perspective, and then Shary (1995) 
developed this theory including gravity-invariant cur
vatures and defined the various relationships between 
them. Gravity-invariant curvatures, such as maximum, 
minimum, Gaussian and mean curvatures, are consid
ered in classical differential geometry; they describe 

the local shape of a 2-dimensional manifold in 
3-dimensional space and are also called geometric 
curvatures. However, the land surface is in the gravita
tional field, and surface material movement is simulta
neously influenced by both the terrain shape and 
gravity (Mitášová and Hofierka 1993; Evans 2012). 
Therefore, the gravitational processes at the Earth’s 
surface are difficult to assess by using gravity- 
invariant curvatures. Therefore, gravity-specific curva
tures, such as profile, tangential and plan curvatures, 
have been defined and are commonly used in 
geoscience. Gravity-specific curvatures dominate in 
geoscience compared to gravity-invariant curvatures 
(Minár, Evans, and Jenčo 2020). In recent years, a mix 
of gravity-specific and gravity-invariant curvatures has 
been used in land surface classification (Dekavalla and 
Argialas 2017) and the geomorphological mapping of 
submarine areas (Moskalik et al. 2018). The definitions 
of the curvatures mentioned above are further dis
cussed in the methodology section.
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Due to the continuity of terrain representations 
and aiming at a simple data structure, regularly 
sampled grid-based digital elevation models (Grid- 
DEMs) are generally the basis for LSCs calculations. 
The calculation of LSCs is related to the second-order 
derivatives of the land surface. Under the assumption 
that the surface is at least C2 smooth, the local surface 
fitting method in a 3 × 3 window is generally used to 
calculate the first- and second-order partial deriva
tives to obtain the LSCs (Hengl and Evans 2009). The 
full quadratic, constrained quadratic, and incomplete 
quartic functions are the most commonly used local 
surface fitting methods (Evans 1980; Zevenbergen 
and Thorne 1987; Shary 1995). In addition, benefitting 
from the equidistant sampling of Grid-DEMs, numer
ical differentiation methods are also popular for cal
culating LSCs (Moore et al. 1993). According to 
previous studies, these LSC calculation methods 
based on Grid-DEMs can provide sufficiently accurate 
results, especially for mathematically simulated sur
faces (Schmidt, Evans, and Brinkmann 2003). 
However, real landforms are complex and not as 
smooth as mathematically simulated surfaces. Hu 
et al. (2021a) reported that the LSCs results are often 
suboptimal in complex terrain feature areas due to 
various errors and uncertainties in Grid-DEM genera
tion. Numerous studies have shown that these LSCs 
calculation methods are very sensitive to DEM error 
(Florinsky 1998; Jochen, Evans, and Brinkmann 2003). 
In addition, geoscience research involves many multi
scale characteristics; thus, algorithms should be less 
affected by the landform scale.

The triangulated irregular network (TIN) is intro
duced as another DEM structure, mainly for the follow
ing two considerations (Wolf 2004): first, a Grid-DEM 
cannot provide land surface details and limit data 
redundancy simultaneously; second, the level of detail 
of land surface expression should match the scale of 
geographic objects and processes rather than the 
sampling rules. In contrast to Grid-DEMs, TINs can 
provide sufficient detail in complex terrain and sim
plify representations in gradual change areas across 
the land surface by using various sampling densities 
and strategies. As the measurement techniques are 
developed, the TINs in previous studies based on 
sparsely sampled surfaces can be derived from dense 
point clouds from LIDAR or photogrammetric techni
ques (Wilson 2018). Some scholars have suggested 
that TINs be used in place of Grid-DEMs in land surface 

analysis and GIScience, and related studies have 
rapidly expanded in recent years. Currently, TINs play 
important roles in land surface visualization, terrain 
feature extraction, visibility analysis, geomorphic evo
lution modeling, spatially distributed hydrological 
models, etc (Tucker et al. 2001; Yang, Shi, and Li 
2005; Li, Wang, and Yang 2008; Refice, Giachetta, and 
Capolongo 2012; Wu et al. 2014; Noh and Howat 2015; 
Barnhart et al. 2019). Accordingly, analysis methods 
based on TINs should be updated and developed. 
This shift is more than a data structure change, and 
the most important difference is reflected in the pro
gress of analytical methods and ideas. The problems of 
scale have always been an important issue in 
geoscience research, and TINs and the corresponding 
analysis methods may provide a feasible solution. 
Terrain parameter calculations can be performed 
based on TINs, but there are still many deficiencies in 
existing research. Different from Grid-DEMs, a TIN is 
constructed based on the topological relations among 
vertices, edges and triangular facets with high com
plexity. Thus, the local surface fitting and finite differ
ence methods developed for Grid-DEMs are difficult to 
directly apply to TINs. For example, slope and aspect 
calculation algorithms based on triangular facets have 
been studied for some time, but algorithms specific to 
TIN vertices have not been studied as much (Krcho 
1992; van Kreveld 1997; Hu et al. 2021b).

In addition, LSCs calculation methods based on 
TINs, especially the methods for calculating gravity- 
specific curvatures, are still insufficient. van Kreveld 
(1997) used a curve fitting method to describe the 
plan and profile curvature calculations but did not 
perform further experiments. The computer graphics 
community has broadly explored gravity-invariant 
curvatures. The most recent study (Stupariu 2021) 
compared different gravity-invariant curvature cal
culation methods based on TINs derived from terrain 
point cloud data but did not consider gravity-specific 
curvatures. With different research objectives and 
disciplines, the computer graphics community does 
not focus on gravity-specific curvatures, although 
they are important in geoscience. Hence, LSCs calcu
lation methods based on TINs are still insufficient, 
which limits the application of TIN models in 
geoscience.

Mathematical vector theory and the corresponding 
operations have been studied in geomorphometry 
and GIScience. Ritter (1987) proposed a vector-based 
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slope and aspect algorithm, and then Hodgson and 
Gaile (1996) used a vector operation to generate the 
statistics of surface orientation. Li and Hodgson (2004) 
abstracted the vector field data model and operations 
for a raster data structure. The most recent studies 
concerning vector operations have mainly focused 
on second-order derivative calculations and land sur
face concavity-convexity quantification (Hu et al. 
2020, 2021a). These studies were based on Grid- 
DEMs. In this study, we propose a mathematical vec
tor framework for LSCs calculation from TINs. In our 
framework, the different curvatures in the LSC system 
can be mutually derived. Then, our framework sup
ports curvature calculations that involve both vertices 
and triangular facets. Finally, replaceable weighting 
methods are introduced into our framework. Our 
research is an extension of mathematical vector the
ory and vector operations in geomorphometry and 
GIScience.

2 Methodology

2.1 Theoretical basis

2.1.1 Interpretations of LSCs
First, we provide a review of the interpretations of 
commonly used curvatures in geoscience. 
Considering a point P on an assumed smooth surface 
S, there is a tangent plane TPS and a corresponding 
normal vector n in space at that point (Figure 1(a)). An 
arbitrary plane passing through point P and the nor
mal vector n will intersect the surface and form 
a curve. There are countless such curves, but two 
curves perpendicular to each other yield the 

maximum curvature Kmax and minimum curvature 
Kmin at point P (Do Carmo 1976). Similarly, this plane 
can also pass through the aspect vector and produce 
a curve, which is called the slope line in the literature 
(Figure 1(a)) (Minár, Evans, and Jenčo 2020; Hu et al. 
2021a). The curvature of the slope line at point P is the 
profile curvature (Kn)s. Additionally, there is another 
curve perpendicular to the slope line, which is called 
the normal contour in the literature (Minár, Evans, and 
Jenčo 2020); this curve can be used to define the 
tangential curvature (Kn)c (Figure 1(a)). The plan cur
vature (also named contour curvature) (Kp)c is the 
curvature of the contour at point P and is not defined 
by using the normal vector n (Figure 1(a)) but can be 
derived from the relationship between (Kn)c and the 
land surface slope (Jochen, Evans, and Brinkmann 
2003). The curvatures mentioned above are the 
most common and widely used in geoscience, and 
other curvatures can be derived based on them.

2.1.2 Normal curvatures and curvature tensor
From the perspective of differential geometry, bend
ing at a surface in space is a self-dependent property 
that does not need to be represented and defined by 
curves. Considering point P again, the surface may 
exhibit different degrees of bending in different direc
tions in space. Differential geometry uses normal cur
vatures to describe the spatial bending of the surface. 
Normal curvatures depend on the point location and 
the corresponding tangent vectors (i.e. the vectors in 
the tangent plane TPS) at the surface. Kmax,Kmin, (Kn)s, 
and (Kn)c are surface normal curvatures and corre
spond to the maximal, minimal, slope, and normal 
contour directions, respectively (Figure 1(b)). These 

Figure 1. Interpretations of the commonly used LSCs from the perspectives of (a) sectional curves and (b) direction vectors.
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direction vectors are tangent vectors in the tangent 
plane TPS of point P. The plan curvature (Kp)c is not 
a normal curvature; thus, it expresses terrain plan 
bending rather than spatial bending. The normal cur
vature Kn in the direction of the unit-length vector 
T can be calculated at a smooth surface S by using 
equation (1) as follows (Taubin 1995): 

KnðTÞ ¼ ð s t ÞII s
t

� �

¼ð s t Þ e f
f g

� �
s
t

� �

; (1) 

where T = sT1 + tT2 is a tangent unit-length vector at 
point P on the surface, and {T1,T2} is an orthonormal 
basis of the tangent plane TPS at point P on the sur
face. Note that II is the second fundamental form of 
surface S in differential geometry and is defined as 
a quadratic form with basis-invariance, i.e. the choice 
of basis is arbitrary (Do Carmo 1976). In equation (1), II 
is expressed as a symmetric matrix representation 
under the orthonormal basis {T1,T2}, which is called 
the Weingarten matrix. In computer graphics, II is 
called the curvature tensor, and normal curvatures 
can be generated from it (Taubin 1995). In this 
study, we use the curvature tensor to calculate the 
LSCs based on TINs.

2.2 Land surface curvature calculation from TINs

Generally, the vertices of a TIN are irregularly distrib
uted elevation sampling points on the land surface, 
and the facets of a TIN are abstractions and simplified 
representations of the local land surface. The TIN 
vertices and facets depict the land surface shape in 
a complementary manner, both are significant in 
geoscience. Thus, LSCs calculations should include 
both the vertices and facets of TINs. Inspired by the 
work of Rusinkiewicz (2004), who estimated the 

gravity-invariant curvatures in computer graphics, 
we propose a mathematical vector framework for 
LSCs calculations, including gravity-invariant and 
gravity-specific curvatures, based on both TIN vertices 
and triangular facets. It should be clarified that the 
definition of II and relative mathematical derivations 
hold only for smooth surfaces, however, as 
Rusinkiewicz (2004) pointed out, we can approximate 
them in the discretized case (such as a TIN) by using 
finite differences. The sub-sections below will provide 
the mathematical derivations and implemented finite 
differences in detail.

2.2.1 Calculation of the curvature tensor based on 
TIN triangular facets

The curvature tensor II (hereinafter referred to as II) 
for a triangular facet should be calculated first. This 
calculation is based on the relationship between II 
and the surface normal vector. Multiplying II by direc
tion vector s in the tangent plane TPS yields the 
directional derivatives Ds n of the surface normal vec
tor at a smooth surface S (Rusinkiewicz 2004): 

IIs ¼ Dsn (2) 

There are three edge vectors s1,s2, and s3 for a given 
TIN triangular facet (Figure 2(a)). Based on the finite 
difference principle, Ds n can be discretized as the 
difference in TIN vertex normal vectors (i.e. n1,n2, and 
n3 in Figure 2(a)) in the edge directions. The calcula
tion of TIN vertex normal vectors involves a weighting 
method for normal vectors of triangular facets, and 
the method used in this study is based on the 
approach used by Max (1999) and Hu et al. (2021b). 
They used the area of each triangular facet divided by 

Figure 2. Diagrammatic sketch of the local coordinate system at (a) triangle facet (revised from the work of Rusinkiewicz (2004)) and 
(b) vertex.
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the square of the length of the two edges that touch 
the vertex. This weighting method is recommended 
but optional.

Equation (2) should be implemented in the local 
coordinate system for each facet. The local coordinate 
system for each facet consists of uf = UnitVector(s1), 
and vf = UnitVector (nf × uf) (Figure 2(a)). Therefore, 
a set of linear simultaneous equations can be 
obtained based on equation (2) at a smooth surface 
S, as shown in equation (3) (Rusinkiewicz 2004): 

II s1 � uf
s1 � vf

� �

¼
n3 � n2ð Þ � uf
n3 � n2ð Þ � vf

� �

II s2 � uf
s2 � vf

� �

¼
n1 � n3ð Þ � uf
n1 � n3ð Þ � vf

� �

II s3 � uf
s3 � vf

� �

¼
n2 � n1ð Þ � uf
n2 � n1ð Þ � vf

� �

9
>>>>>>=

>>>>>>;

)

s1 � u2f s1 � vf 0
0 s1 � uf s1 � vf

s2 � uf s2 � vf 0
0 s2 � uf s2 � vf

s3 � uf s3 � vf 0
0 s3 � uf s3 � vf

0

B
B
B
B
B
B
@

1

C
C
C
C
C
C
A

e
f
g

0

@

1

A

¼

n3 � n2ð Þ � uf
n3 � n2ð Þ � vf
n1 � n3ð Þ � uf
n1 � n3ð Þ � vf
n2 � n1ð Þ � uf
n2 � n1ð Þ � vf

0

B
B
B
B
B
B
@

1

C
C
C
C
C
C
A

) (3) 

Equation (3) includes six equations and the three 
unknowns of e, f, and g; thus, it is an overdetermined 
set of equations that can be solved by using the least- 
squares method. As Rusinkiewicz (2004) indicated, the 
finite difference approximation and least-squares 
approach provide a high degree of accuracy in many 
common cases. Thus, II expressed in the (uf,vf) coor
dinate system of a triangular facet can be calculated.

2.2.2 Calculation of the curvature tensor at TIN 
vertices

Assume that each vertex has a unique orthonormal 
coordinate system that consists of up = UnitVector (s1 

× np)), and vp = UnitVector (np × up) (Figure 2(b)). In 
one case, the triangular facet normal vector nf equals 
the vertex normal vector np, which means that the 
triangular facet coordinate system (uf,vf) and vertex 
coordinate system (up,vp) are coplanar. Following 

equation (4) below, II can be expressed based on the 
directions of up and vp at a smooth surface 
S (Rusinkiewicz 2004): 

ep ¼
up � uf
up � uf

� �T

II
up � uf
up � uf

� �

¼
up � uf
up � uf

� �T e f
f g

� �
up � uf
up � uf

� �

fp ¼
up � uf
up � uf

� �T

II
vp � vf
vp � vf

� �

¼
up � uf
up � uf

� �T e f
f g

� �
vp � vf
vp � vf

� �

gp ¼
vp � vf
vp � vf

� �T

II
vp � vf
vp � vf

� �

¼
vp � vf
vp � vf

� �T e f
f g

� �
vp � vf
vp � vf

� �

(4) 

where II is expressed in the triangular facet coordinate 
system (uf,vf). However, in most cases, (uf,vf) and (up, 
vp) are not coplanar. Accordingly, we should rotate 
the coordinate system of (up,vp) to be coplanar with 
the coordinate system of (uf,vf). This rotation involves 
the cross product of vectors nf and np and is based on 
equation (5) (Goldman 2011): 

R ¼
r2

x ð1 � cos θÞ þ cos θ rxryð1 � cos θÞþrz sin θ rxrzð1 � cos θÞ � ry sin θ
rxryð1 � cos θÞ � rz sin θ r2

yð1 � cos θÞ þ cos θ ryrzð1 � cos θÞþrx sin θ
rxrzð1 � cos θÞþry sin θ ry rzð1 � cos θÞþrx sin θ r2

z ð1 � cos θÞ þ cos θ

0

@

1

A; (5) 

where r equals the cross product of nf and np; θ is the 
angle between nf and np; and R is the rotation matrix. 
After applying this rotation to (up,vp), (up,vp) will be 
coplanar with (uf,vf). Thus, we can calculate II in terms 
of the corresponding (up,vp) on each triangular facet 
by using equation (4), and the next step is weighting, 
i.e. how much the II on each triangular facet should 
be allocated at the corresponding vertices. 
Rusinkiewicz (2004) referenced the work of Meyer 
et al. (2003), who used “Voronoi area” weighting for 
triangles with various shapes and sizes. This weight
ing method is also optional.

2.2.3 Derivation of common land surface 
curvatures based on the curvature tensor

As mentioned in section 2.1.2, the maximum, mini
mum, profile and tangential curvatures are normal 
curvatures and can be derived directly from curvature 
tensor II. The other LSCs are basic curvature combina
tions or derivations. In this section, we provide opera
tors for these commonly used curvatures.

Equation (1) involves a case of f = 0 with a special 
orthonormal basis {T1,T2}. In this case, the specific 
vectors {T1,T2} are called principal directions of the 
surface at point P. The corresponding directional cur
vatures are the principal curvatures, i.e. the maximum 
and minimum curvatures. From differential geometry 
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and linear algebra, the principal curvatures and direc
tions can be calculated by the eigenvalues and corre
sponding eigenvectors of the II (Rusinkiewicz 2004).

Gravity-specific curvature calculations based on 
the curvature tensor have not been discussed in pre
vious studies. Different from the directions of principal 
curvatures, the directions of the profile and tangential 
curvatures are specific. Thus, the objective is to 
express the slope and normal contour directions in 
the coordinate systems of (uf,vf) or (up,vp). 
Assuming that a normal vector n = (nx,ny,nz) could 
be a triangular facet or vertex vector, the correspond
ing aspect vector is naspect = (nx,ny, 0). Additionally, 
the normal contour direction Tnc = UnitVector (naspect 

× n), and the slope direction Tns = UnitVector (n × Tnc). 
Thus, the commonly used tangential, profile, and plan 
curvatures in geoscience can be obtained for 
a smooth surface S from equation (6) as follows: 

ðKnÞc ¼ KnðTncÞ ¼
Tnc � u
Tnc � v

� �T

II Tnc � u
Tnc � v

� �

ðKnÞs ¼ KnðTnsÞ ¼
Tns � u
Tns � v

� �T

II Tns � u
Tns � v

� �

ðKpÞc ¼
ðKnÞc

sinðarctanðð
ffiffiffiffiffiffiffiffiffiffi
n2

xþn2
y

p
Þ=nzÞÞ

(6) 

where (u, v) can be a triangular facet or a vertex 
coordinate system; the profile curvature is (Kn)s, the 
tangential curvature is (Kn)c, and the plan (contour) 
curvature is (Kp)c. The operators for LSCs calculations 
are oriented to curvature tensor II without TIN facet or 

vertex limitations. Accordingly, the LSCs of the TIN 
can be calculated based on II for a triangular facet 
or a vertex.

This algorithm uses 1-ring of facets around each 
vertex to calculate the curvature tensor and LSCs, 
according to the pseudocode presented in Figure 3.

2.2.4 Derivation of other land surface curvatures

Previous studies have also proposed many other LSCs 
for practical application, although they are not used 
as commonly as the profile, tangential, and plan cur
vatures in geoscience. The relationships among these 
LSCs were studied by Shary (1995) and Minár, Evans, 
and Jenčo (2020). Table 1 consolidates the work of 
Minár, Evans, and Jenčo (2020). All these LSCs can be 
derived from the basic minimum Kmin, maximum Kmax, 
profile (Kn)s, and tangential (Kn)c curvatures. Thus, the 
proposed mathematical vector framework can sup
port the relevant calculations for the LSC system.

2.3 Comparison methods

The comparison in this study focused primarily on 
grid- and TIN-based methods and attempted to assess 
the advantages and disadvantages of the proposed 
mathematical vector framework. For grid-based 
methods, the ZEVENBERGEN and EVANS methods 
were selected because they are widely used in land 
surface analysis. The ZEVENBERGEN method uses an 

Figure 3. Pseudocode for the calculation of the curvature tensor, profile curvature and tangential curvature based on a TIN.
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incomplete quartic surface as the fitting function in 
a local 3 × 3 window, and the EVANS method uses 
a full quadratic surface. Details of the two methods 
can be found in previous studies (Evans 1980; 
Zevenbergen and Thorne 1987; Jochen, Evans, and 
Brinkmann 2003). Uniform and nonuniform sampling 
methods were used to build TINs and generate differ
ent triangle shapes. Uniform sampling for a TIN means 
isosceles right triangles (i.e. dividing grids by diago
nals), while the shape of the triangles for random 
sampling is unconstrained. The influence of the sam
pling type on LSCs calculation based on TINs is 
explored in the next section. In short, for uniform 
sampling, the EVANS, ZEVENBERGEN and TIN-based 
methods can all be used because a Grid-DEM is actu
ally a result of uniform sampling, and a TIN-based 
method can be used for nonuniform sampling. In 
addition, a TIN simplification method called quadric 
error metrics (QEM) is used in our research to produce 
the optimized TIN. Details about the QEM method can 
be found in the related works (Garland and Heckbert 
1997; Feciskanin 2012). The influence of the TIN trian
gle shape will be explored.

Because the mathematically simulated surface (see 
the materials section for details) can provide analytical 
results, accuracy assessments were based on this surface 
for the ZEVENBERGEN, EVANS, and TIN-based (including 
uniform sampling, random sampling, and QEM simplifi
cation) methods. In the ranges of x and y given above for 
the mathematically simulated surface, we varied the cell 

size from 6 m to 20 m at an interval of 2 m to generate 
a series of Grid-DEMs, and these uniform points were 
also used to construct the TINs. In random sampling, the 
number of sampling points in each cell size was the 
same as that for the Grid-DEM, i.e. with 40,401, 22,801, 
14,641, 10,201, 7,396, 5,776, 4,489 and 3,721 random 
sampling points. With the create random points tool in 
ArcGIS, a series of TINs was built by using the Delaunay 
triangulation method based on random points on the 
mathematically simulated surface. For the QEM simplifi
cation method, the initial TINs are constructed by uni
form and random sampling with a 5 m cell size number 
of points respectively. Then, a series of simplified and 
optimized TINs are generated by using the QEM 
method, and the same number of sampling points is 
kept as above. The different cell sizes and sampling 
densities represent different scales of the mathemati
cally simulated surface, and this approach can help to 
explore the scale effects on the calculation results in our 
research. Moreover, error sensitivity analysis is also an 
important part of the comparison of different methods. 
We can use the simulation error for the mathematically 
simulated surface to conduct this comparison experi
ment. The parameters of the normally distributed error 
are the mean and standard deviation, and the standard 
deviation is related to the error intensity. We set the 
standard deviation from 0.05 to 0.5 in 0.05 intervals to 
generate a series of different intensities of normally 
distributed error and then exert it to the cell size 6 m 
Grid-DEM, uniform TIN, and random TIN and 

Table 1. LSCs used in geomorphometry and the relationships among them.
Curvature name Equation Geoscience meaning

Mean Kmean = (Kmax + Kmin)/2 = ((Kn)s 

+ (Kn)c)/2
It describes the bending degree of a surface in the Euclidean space (Gauss 1828) and can quantify the 

divergence of the sediment flow rate.
Gaussian Kg = Kmax * Kmin It is often used in geology and cartography due to the invariance of a curve length with zero Kg, and can 

identify specific conical or cylindrical landforms.
Unsphericity Ku = (Kmax – Kmin)/2 It quantitatively describes the proximity between the surface and the sphere (Shary 1995).
Casorati Kc = sqrt(((Kmax)2 + (Kmin)2)/2) It expresses the magnitude of surface bending regardless of its shape (Casorati 1900; Florinsky 2017).
Total 

accumulation
Ka = (Kn)s * (Kn)c It reflects the relative accumulation area of surface material migration (Shary 1995).

Difference Kd = ((Kn)s–(Kn)c)/2 = Kmean 

-(Kn)c = (Kn)s–Kmean

It expresses an excess of mass flow energy that can be directly proportional to denudation (and inversely 
proportional to accumulation) (Minár, Evans, and Jenčo 2020).

Horizontal 
excess

Khe = (Kn)c – Kmin = Ku – Kd It describes the extent to which tangential curvature is larger than minimum curvature (Shary, Sharaya, 
and Mitusov 2002).

Vertical excess Kve = (Kn)s – Kmin = Ku + Kd It describes the extent to which profile curvature is larger than minimum curvature (Shary, Sharaya, and 
Mitusov 2002).

Total ring Kr = (Ku)2 – (Kd)2 = Ka – Kg = Kve 

* Khe

It is a transformation (square) of the contour geodesic torsion that is one of the basic trios that expresses 
a twisting (gravity discordance) of the land surface (Minár, Evans, and Jenčo 2020).

Cross sectional* Zcc = (Kn)c/cos(S) It is the rate of slope change in the direction perpendicular to the downslope direction (Wood 1996).
Longitudinal* Zss = (Kn)s/(cos3(S)) It is the rate of slope change along the downslope direction (Wood 1996).
Flow line 

(streamline)*
|(Kp)s| = sqrt(Kr * (1 + tan2(S))/ 

tan2(S))
It is a directional derivative for characterizing a change of aspect in the direction of a slope line and is used 

to describe the swing degree of the flow path (Krcho 1992).

* S = arctan(sqrt(nx
2+ ny

2)/nz) is the slope; the cross-sectional and longitudinal curvatures (Zcc and Zss) are the second-order derivatives of elevation and are 
associated with curvatures as their slope dependent subforms (Minár, Evans, and Jenčo 2020).
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simplification TIN with the same number of points. The 
simplification TINs were generated from the uniform 
and random sampling TINs with the number of points 
of the 5 m cell size. In this way, we assessed the robust
ness of different LSCs calculation methods based on 
different DEM structures. The mean absolute error 
(MAE) concerning LSCs between the calculated and 
analytical results was used for both the scale and error 
effect experiments mentioned above based on the 
mathematically simulated surface (Chai and Draxler 
2014). We also drew a line chart of the MAE values for 
different methods and types of TINs to exhibit the trends 
of the scale and error effects. Note that the boundary 
points of Grid-DEMs or TINs have been excluded in 
comparison statistics.

3 Materials

We used a simulated surface and three case study 
areas to test the proposed mathematical vector fra
mework based on different data sources, areas, scales 
and sampling techniques. The mathematically simu
lated surface (Figure 4) was constructed by using 
equation (7) (Feciskanin and Minár 2021): 

z ¼ 7 cosð0:006xÞ þ cosð0:008xÞ½ � þ 12 cosð0:01yÞ þ cosð0:015yÞ½ �

þ 15 cosð8� 10� 6x2 þ 10� 5y2Þ þ cosð1:2� 10� 5x2 þ 2:5� 10� 5y2 � 0:8Þ
� �

þ 3 sinð0:025xÞ cosð0:018yÞ þ sinð0:018xÞ cosð0:01yÞ½ �

þ 45 sinð10� 5y2 þ 0:005x þ 0:003y � 0:3Þ � ð1:5� 10� 4x2Þ

� ð4� 10� 10x4Þ � ð5� 10� 4y2Þ þ ð8� 10� 10y4Þ þ ð5� 10� 16y4x2Þ þ 600

(7) 

where x ∊ [−600, 600] and y ∊ [−600, 600]. The mathe
matically simulated surface can provide analytical results 
of LSCs as reference data to validate the sensitivity to 
sampling density and the error of different methods. In 

addition, a series of Grid-DEMs and TINs can be gener
ated by using uniform and random sampling 
techniques.

The first case study area is the Jiuyuangou 
watershed (Figure 5(a)), a typical loess hill–gully 
landform located in northern Shaanxi Province. 
The topographyof this area is fragmented because 
of severe gully erosion. The open NASADEM data
set (NASA 2020) with 1 arc-second spacing 
(approximately 30 m) in this area was used. The 
compound method (Zhou and Chen 2011; Chang 
2019) that integrated the maximum z-tolerance and 
the river network (Figure 5(a)) was used to gener
ate a hydrologically constrained TIN based on 
a Grid-DEM. In this research, we set a tolerance 
value of 5 m in the maximum z-tolerance method.

The second case study area is the Liujiaping gully 
(Figure 5(b)), which is the orographically right branch 
of the Jiuyuangou watershed (Figure 5(a)). The DEM 
data for this area were provided by the Shaanxi Bureau 
of Surveying and Mapping including an original contour 
map with 1:10000 plotting scale, a TIN converted from 
the original contours (Figure 5(b)), and a Grid-DEM 5 m 
cell size converted from the TIN by using linear 
interpolation.

The third case study area is a small watershed 
(Figure 5(c)), called Qiaogou, which is located in the 
Liujiaping gully (Figure 5(b)). The elevation information 
for this area was based on point cloud data produced by 
unmanned aerial vehicle (UAV) acquisition and photo
grammetric techniques (Figure 5(c)). After downsam
pling, the original density point cloud was converted 
into a sparse point cloud with a minimum spatial dis
tance of 1 m. This sparse point cloud was directly con
verted into a TIN by using the Delaunay triangulation 

Figure 4. (a) Elevation of the mathematically simulated surface and the corresponding (b) perspective rendering.
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method. In addition, the dense point cloud was con
verted to a Grid-DEM with a 1 m cell size for comparative 
experiments.

The basic information for the three real landforms 
is provided in Table 2. We matched the appropriate 
data sources at different scales, and all the data 
sources can be converted into TINs. The methods of 
calculating LSCs based on the Grid-DEMs and TINs in 
the three different areas were further investigated.

4 Results

The scale and error effect experiments performed to 
calculate the profile and tangential curvatures were 
based on the mathematically simulated surface. As 
noted in the above sections, these two gravity- 
specific curvatures are fundamental to the LSCs sys
tem and are widely used in geoscience. In this section, 
we show the advantages and limitations of LSCs 

calculations based on TINs under the proposed math
ematical vector framework. In the terms of Minár et al. 
2013, the first experiment (section 4.2) reveals differ
ences in the method error (computational accuracy 
for errorless DEM) in various scales. The second one 
(section 4.3) shows how compared methods deal with 
data error (the error rate of DEM) that dominate in our 
example on the cell sizes of 6 m and coarser. 
A balanced influence of method error and data error 
(using finer cell size and different DEM data sources) 
could be further explored.

4.1 Profile and tangential curvature results based 
on TINs

Based on the mathematically simulated surface with 
1,442,401 random sampling points (which corresponds 
to uniform sampling with an interval of 1 m), the fre
quency curves of the profile and tangential curvatures 

Figure 5. Field study areas: (a) Jiuyuangou watershed, (b) Liujiaping gully, and (c) Qiaogou small watershed.

Table 2. Basic information for the three real landform areas.
Geographic 
coordinates

Sample 
areas Area(km2)

Average 
Elevation(m) Cell size*(m)

Data 
source

110°14′ – 110°22′E 
37°32′ – 37°37′N

Jiuyuangou 100 995.35 30 NASADEM

110°15′ – 110°18′E 
37°34′ – 37°36′N

Liujiaping 10.5 952.62 5 Contour map

110°16′ – 110°17′E 
37°33′ – 37°34′N

Qiaogou 0.3 917.41 1 UAV photogrammetry-based point cloud data

* The cell size is from the Grid-DEM based on different data sources.

Table 3. MAE of the profile curvature values based on different methods and different DEM structures with different numbers of 
sampling points.

MAE 40,401 22,801 14,641 10,201 7,396 5,776 4,489 3,721

ⅰ 5.87e-6 1.03e-5 1.60e-5 2.30e-5 2.95e-5 4.01e-5 4.81e-5 6.26e-5
ⅱ 8.83e-6 1.55e-5 2.41e-5 3.45e-5 4.46e-5 6.10e-5 7.39e-5 9.59e-5
ⅲ 3.69e-5 5.66e-5 7.95e-5 1.05e-4 1.23e-4 1.63e-4 1.79e-4 2.31e-4
ⅳ 4.39e-4 4.78e-4 5.06e-4 5.38e-4 5.79e-4 5.92e-4 6.54e-4 6.74e-4
Ⅴ 1.01e-4 2.24e-4 2.49e-4 2.67e-4 3.20e-4 3.63e-4 4.22e-4 4.66e-4
VI 3.83e-4 4.22e-4 4.28e-4 4.52e-4 4.81e-4 5.06e-4 5.49e-4 5.76e-4

* ⅰ, ⅱ, ⅲ, ⅳ, Ⅴ, and VI represent the ZEVENBERGEN, EVANS, TIN-based (uniform sampling), TIN-based (random sampling), TIN-based (QEM simplification for 
uniform sampling), and TIN-based (QEM simplification for random sampling) methods, respectively.
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show that the changes are relatively gradual in most 
areas of the surface because the corresponding absolute 
curvature values are less than 0.01 (Figure 6(a,b)). This 
range of curvature values is similar to that for the 
Jiuyuangou watershed (Figure 6(c,d)), but the resolution 
of the data source used for Jiuyuangou is approximately 
30 m. As a subregion of the Jiuyuangou area, the 
Liujiaping gully displayed an absolute curvature value 
of less than 0.05 in most areas based on the curvature 
frequency curves (Figure 6(e,f)). The data source for the 
Liujiaping gully is a contour map with a 1:10000 plotting 
scale, which is equal to an approximately 5 m resolution 
in the Grid-DEM. The most special area is the Qiaogou 
subregion in the Liujiaping gully, where point cloud data 
were used. The frequency curve results indicate that the 
absolute curvature value was less than 0.5 in most parts 
of Qiaogou (Figure 6(g,h)), which reflects a complex land 
surface structure. The more detailed DEM can capture 
more subtle forms in the framework of the nested hier
archy of landforms (Minár and Evans 2008; Evans 2012), 
which results in higher curvature values. Thus, the 
results show that the LSCs are very sensitive to the 
scale of the analysis, defined by the resolution of the 
DEM. In addition, the results actually are influenced by 
the accuracy issues caused by various DEM sources and 
different TIN conversion methods.

4.2 Assessment of method error and scale effects

By using the analytical results of the mathematically 
simulated surface as reference data, we assessed the 
scale effects on the curvature calculation results based 
on the fluctuations in method error. Tables 3 and 4 
show that the accuracy results of the ZEVENBERGEN 

method were better than those of the EVANS method 
based on Grid-DEMs. This is a reasonable observation 
as in previous studies (Jochen, Evans, and Brinkmann 
2003), due to the ZEVENBERGEN polynomial fitting 
more precise input points than the EVANS polynomial. 
The two grid-based methods provide more accurate 
profile and tangential curvature results than the results 
of the TIN method based on four types of TINs. For the 
results of the TIN-based method, TINs with uniform 
sampling show the best accuracy, TINs with QEM sim
plification take second place, the TINs with random 
sampling are the worst. Specific to the results of QEM 
simplification, TINs simplified from uniform sampling 
perform better than TINs simplified from random sam
pling. Figure 7 shows the line charts of the MAE (equal 
to the method error in this experiment) as the number 
of sampling points decreases based on Tables 3 and 4, 
where similar trends of the six curves imply that the 
TIN- and grid-based methods have similar scale depen
dence. As a previous study pointed out (Minár et al. 
2013), in addition to being based on the Grid-DEM, the 
power functions can also approximate the dependence 
of the method error (MAE in Tables 3 and 4) on the 
number of sampling points used in the TIN. 
Nevertheless, the LSCs calculation based on TIN is still 
of significance because method error is in practice 
usually less important than data error. Moreover, 
many geographical processes and phenomena need 
to be described and quantified at different scales, and 
the TIN structure can support multiple-scale terrain 
sampling. Method error of the TIN-based method is 
greatly affected by the shape of TIN triangles. 
Obviously, the TIN optimization used by QEM does 
not optimally play with the curvature calculation 

Figure 6. Frequency curves for the profile and tangential curvature results based on the TIN-based method in mathematically 
simulated surface (a, b), Jiuyuangou (c, d), Liujiaping (e, f), and Qiaogou (g, h).
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Table 4. MAE of the tangential curvature values based on different methods and different DEM structures with different numbers of 
sampling points.

MAE 40,401 22,801 14,641 10,201 7,396 5,776 4,489 3,721

ⅰ 6.10e-6 1.07e-5 1.66e-5 2.38e-5 3.11e-5 4.17e-5 5.10e-5 6.51e-5
ⅱ 9.47e-6 1.66e-5 2.58e-5 3.70e-5 4.81e-5 6.53e-5 7.97e-5 1.02e-4
ⅲ 3.09e-5 4.87e-5 7.01e-5 9.43e-5 1.18e-4 1.51e-4 1.80e-4 2.19e-4
ⅳ 4.74e-4 4.96e-4 5.03e-4 5.36e-4 5.83e-4 6.07e-4 6.47e-4 6.89e-4
Ⅴ 9.87e-5 2.19e-4 2.55e-4 2.71e-4 3.38e-4 3.86e-4 4.48e-4 4.92e-4
VI 4.11e-4 4.16e-4 4.20e-4 4.34e-4 4.52e-4 4.94e-4 5.34e-4 5.56e-4

* ⅰ, ⅱ, ⅲ, ⅳ, Ⅴ, and VI represent the ZEVENBERGEN, EVANS, TIN-based (uniform sampling), TIN-based (random sampling), TIN-based (QEM simplification for 
uniform sampling), and TIN-based (QEM simplification for random sampling) methods, respectively.

Table 5. MAE of the profile curvature values based on different methods and DEM structures with different standard deviations of 
normally distributed errors.

MAE 0 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.50

ⅰ 5.87e-6 0.0149 0.0240 0.0346 0.0439 0.0554 0.0663 0.0782 0.0888 0.0986 0.108
ⅱ 8.83e-6 0.0114 0.0154 0.0202 0.0253 0.0307 0.0363 0.0423 0.0480 0.0531 0.0596
ⅲ 3.69e-5 0.0004 0.0009 0.0013 0.0018 0.0022 0.0027 0.0031 0.0036 0.0040 0.0045
ⅳ 4.39e-4 0.0030 0.0055 0.0075 0.0094 0.0114 0.0127 0.0140 0.0155 0.0164 0.0177
Ⅴ 1.01e-4 0.0005 0.0011 0.0016 0.0021 0.0027 0.0031 0.0037 0.0042 0.0047 0.0052
VI 3.83e-4 0.0031 0.0036 0.0043 0.0051 0.0060 0.0067 0.0075 0.0082 0.0090 0.0097

aⅰ, ⅱ, ⅲ, ⅳ, Ⅴ, and VI represent the ZEVENBERGEN, EVANS, TIN-based (uniform sampling), TIN-based (random sampling), TIN-based (QEM simplification for 
uniform sampling), and TIN-based (QEM simplification for random sampling) methods, respectively.

Figure 7. Line charts of the MAE as the number of sampling points decreases: (a) profile curvature and (b) tangential curvature.
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presented here. More analysis concerning the influence 
of the shape of TIN triangles can be found in the 
discussion section.

4.3 Assessment of the data error effects

The cell size of Grid-DEM and uniform sampling TIN is set 
as 6 m and kept invariant in this experiment. 
Accordingly, the vertex number of the random sampling 
TIN and simplification TINs is the same as that of a 6 m 
cell size Grid-DEM. The standard deviations of normally 
distributed error are increasing and its relation to the cell 
size leads to the high dominance of data error over 
method error in the MAE values. Tables 5 and 6 show 
that the MAE values of the results of the ZEVENBERGEN 
and EVANS methods based on Grid-DEMs increase 
rapidly as the normally distributed errors increase, 
while the MAE values of the TIN-based method with 
uniform sampling, random sampling, and QEM simplifi
cation remain low. The observation that the EVANS 
method provides lower error sensitivity than the 
ZEVENBERGEN method has been reported in 
a previous study (Schmidt, Evans, and Brinkmann 
2003). The TIN-based method displays the best capacity 
for error resistance on the uniform sampling TIN, 
a slightly worse capacity on the QEM simplification TIN, 
and the worst capacity on the random sampling TIN. 
Specific to the results of QEM simplification, TINs simpli
fied from uniform sampling show better characteristics 
than TINs simplified from random sampling. Figure 8 
shows the line charts of the MAE as the normally dis
tributed error intensity increases based on Tables 5 and 
6, where the trends of error sensitivity for different 
methods and structures are obviously displayed. The 
curves for the uniform sampling TIN and QEM simplifica
tion TINs based on uniform and random sampling are 
similar, and they have low MAE values, which shows that 
the optimized TIN also has advantages in LSCs calcula
tion over the random sampling TIN on DEMs with high 

error. In addition, due to the fact that large cell size will 
also weaken the accuracy of the LSCs calculation, the 
error sensitivity of different methods is expected to be 
different when the cell size of DEM becomes finer. 
Generally, high accuracy is the basic requirement for 
any method, but typically, the data quality must be 
high. However, measurement error cannot be avoided, 
especially in regions with complex terrain, and error-free 
data are impossible to obtain (Schmidt, Evans, and 
Brinkmann 2003). Hence, the error sensitivity of 
a method has become increasingly important in many 
applications. In the following section, we demonstrate 
the application potential of the proposed TIN-based 
LSCs calculation method for real landforms.

5 Discussion

5.1 Analysis of the TIN triangle shape effects on 
LSCs calculation

The triangles are the basic elements of the TIN, 
whose shape will influence the expression of the 
land surface and the measurement of the terrain 
property. From the scale and error effects experi
ments above, we find that the TINs with uniform 
sampling have (from the TIN methods) the lowest, 
both method as well as data error. The following 
slightly worse performances in their scale and error 
assessments are the optimized TINs generated from 
the uniform sampling TINs by using the QEM simpli
fication method. The unconstrained TINs generated 
from random sampling by using the Delauney trian
gulation produce the worst results because the 
shape of the triangle is not uniform, nor optimized. 
The inferiority of the nonuniform sampling TINs in 
the accuracy of curvature calculation compared to 
the uniform sampling TINs is mainly caused by the 
weighting methods used in curvature tensor compu
tation. Different shapes of triangles will contribute 
different weights, while the weights for the uniform 

Table 6. MAE of the tangential curvature values based on different methods and DEM structures with different standard deviations of 
normally distributed errors.

MAE 0 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.50

ⅰ 6.10e-6 0.0536 0.0861 0.122 0.159 0.199 0.234 0.273 0.313 0.349 0.385
ⅱ 9.47e-6 0.0417 0.0555 0.0726 0.0907 0.1s09 0.130 0.149 0.171 0.186 0.208
ⅲ 3.09e-5 5.30e-4 1.03e-3 1.54e-3 2.08e-3 2.58e-3 3.05e-3 3.56e-3 4.07e-3 4.55e-3 5.04e-3
ⅳ 4.74e-4 3.22e-3 5.79e-3 7.93e-3 9.92e-3 0.0117 0.0131 0.0143 0.0155 0.0167 0.0175
Ⅴ 9.87e-5 6.79e-4 1.30e-3 1.93e-3 2.55e-3 3.22e-3 3.80e-3 4.38e-3 5.04e-3 5.66e-3 6.22e-3
VI 4.11e-4 2.99e-3 3.42e-3 4.00e-3 4.65e-3 5.36e-3 6.07e-3 6.76e-3 7.48e-3 8.24e-3 8.89e-3

* ⅰ, ⅱ, ⅲ, ⅳ, Ⅴ, and VI represent the ZEVENBERGEN, EVANS, TIN-based (uniform sampling), TIN-based (random sampling), TIN-based (QEM simplification for 
uniform sampling), and TIN-based (QEM simplification for random sampling) methods, respectively.
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sampling TIN are equal. Hence, more suitable 
weighting methods will help to improve the calcula
tion accuracy based on irregular triangles. On the 
other hand, although the isosceles right triangles 
(i.e. dividing grids by diagonals) show advantages 
in the LSCs calculation, it is still not clear which 
shape of triangles is optimal for the weighted 
method used in this paper. Perhaps equilateral trian
gles converted from regular hexagonal grids can be 
yet more suitable, and further research should be 
conducted. In traditional grid-based land surface 
analysis, the analysis extent is expanded usually 
experimentally (i.e, by employing a larger window) 
to achieve generalized results (Florinsky 2009). This 
situation is different in TIN-based analysis because 
the scales of terrain expression can be adjusted. In 
this way, terrain analysis can focus on a 1-ring of 
facets around each vertex or only a triangle facet, if 
a representative and optimized TIN for a certain scale 
of the land surface is available. As Feciskanin and 
Minár (2021) pointed out, TIN multiple-scale simplifi
cation for terrain analysis is becoming increasingly 
important. The representative triangles can be long 

and narrow, however, the TIN optimization aims to 
avoid it. From this view, developing a weighting 
method less sensitive to triangle shapes in the cur
vature computation process can be helpful to land 
surface analysis.

5.2 Preliminary case studies for geomorphological 
classification based on TINs

Application in the classification of land surface concav
ity–convexity.

In geoscience, land surface variations can be clas
sified into concave and convex units. These two types 
of units control the direction of flow, the transport of 
materials, and the accumulation of sediment (Li et al. 
2020). The degree of land surface concavity–convex
ity can be directly quantified by using the mean cur
vature (Romstad and Etzelmüller 2012), but we focus 
only on concave and convex classifications in this 
section to demonstrate the application of the TIN- 
based method. We simply define the areas with 
Kmean > 0 as convex units and the areas with Kmean < 

Figure 8. Line charts of the MAE as the normally distributed error intensity increases: (a) profile curvature and (b) tangential curvature.
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0 as concave. The narrow band at approximately 0 (i.e. 
planar units) is not defined because its range is diffi
cult to determine. The traditional processes are to use 
membership functions to avoid crisp values (Schmidt 
and Hewitt 2004; Qin et al. 2009). In addition, due to 
its low error sensitivity, the EVANS method is used for 
Grid-DEMs in the three areas and compared with the 
proposed TIN-based method. At different scales, con
cave and convex terrain units have different geogra
phical meanings. At the scale of the Jiuyuangou 
watershed based on NASADEM data, the concave 
units are usually valley bottoms, and the convex 
units are hills and ridges. Although the EVANS 
method provides low error sensitivity, the result is 
still greatly affected by the quality of the open DEM 
(Figure 9(a)). In contrast, the TIN-based method pro
vides a reasonable hill and gully distribution pattern 
and ensures the continuity of ridges and hydrological 
networks (Figure 9(b)). At the scale of the Liujiaping 
gully based on a 1:10000 plotting scale contour map, 
the concave units involve gullies of different sizes and 
some concave lower hill slopes, and the convex units 
are mainly peaks, ridges, and some convex upper hill 
slopes. The Grid-DEM for the Liujiaping gully is con
verted from a TIN by using an interpolation method. 

This process increases the uncertainty of the Grid- 
DEM data (Gosciewski 2013), which is reflected in 
the fragmented valleys and ridges in the results of 
the EVANS method (Figure 9(c)). The TIN-based 
method avoids the interpolation process and per
forms analyses directly with the TIN. Consequently, 
the classification results generally match the actual 
terrain features of the Liujiaping gully and are better 
than those of the EVANS method (Figure 9(d)). At the 
scale of the Qiaogou small watershed based on 
a point cloud data source, the concave units are 
road cuts, agricultural terrace surfaces, and rills on 
hill slopes; the convex units are mainly hilltops, scarps, 
and agricultural terrace ridges. In theory, based on the 
high-resolution Grid-DEM data derived from dense 
point clouds, the EVANS method can provide 
a reliable classification result. However, as mentioned 
in the above sections, measurement errors cannot be 
entirely avoided. The classification results of the 
EVANS method are not visually superior to those of 
the TIN-based method (Figure 9(e,f)). Furthermore, 
this classification difference can also be due to the 
different degrees of generalization between the struc
tures of Grid-DEM and TIN.

Application in the classification of hillslope units.

Figure 9. Classification of terrain concavity–convexity by using the mean curvature. Jiuyuangou watershed: (a) open Grid-DEM and (b) 
TIN converted from the open Grid-DEM; Liujiaping gully: (c) Grid-DEM converted from a TIN and (d) TIN converted from a contour map; 
and Qiaogou small watershed: € Grid-DEM converted from point cloud data and (f) TIN converted from point cloud data. A 50% 
transparent hill shade layer is overlaid on the (e) and (f) panels to aid interpretation.
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In this case, we perform a preliminary experi
ment that involves the classification of hillslope 
units based on the TIN for the Liujiaping gully. 
The principle of classification references the work 
of Drăguţ and Blaschke (2006) and is simplified in 
this research. The slope gradient is first used to 
classify the terrain as flat (slope gradient < 2°), 
hillslope (2° ≤ slope gradient ≤ 45°), or steep 
slope (slope gradient > 45°). Then, to simplify 
the problem, we use the positive or negative 
profile and tangential curvatures to classify the 

hillslope shapes as nose slopes, negative con
tacts, head slopes, and shoulders. The details of 
these principles are shown in Table 7. With this 
classification method, the results based on the 
Grid-DEM (Figure 10(a)) remain fragmented as 
observed for the terrain concavity–convexity clas
sification result (Figure 9(c,d)). This result does 
not support people’s basic understanding of hill
slope units. In contrast, the classification result 
obtained with the TIN-based method 
(Figure 10(b)) based on the TIN is generally rea
sonable. Figure 10(c) shows the classification area 
difference based on a TIN and Grid-DEM for var
ious hillslope units. Note that this classification 
method that uses the crisp values of terrain attri
butes has potential limitations because the 
thresholds of the slope and LSCs are scale depen
dent. In fact, the classification of hillslope units is 
complex. The crisp values of terrain attributes are 
usually not sufficiently representative and are 
replaced with membership functions (Schmidt 
and Hewitt 2004; Qin et al. 2009). In addition, 

Table 7. Parameters directly used in landform classification (ND- 
not defined).

Hillslope units
Morphometric feature (directly 

defined)

Name Description

Curvature (1/m)

Slope (°)Profile Tangential

Flat ND ND <2
Steep slope ND ND >45
Shoulder Convex element + – ND
Nose slope Convex hillslope + + ND
Head slope Concave hillslope – – ND
Negative contact – + ND

Figure 10. Classification of hillslope units based on the combination of curvatures for Liujiaping gully: (a) EVANS-method based on 
a Grid-DEM; (b) TIN-based method based on a TIN; and (c) area statistics bar graphic for the two results. A 50% transparent hill shade 
layer is overlaid on each panel to aid interpretation.
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the object-based image analysis (OBIA) technique 
has been used to segment terrain into the analy
sis units for further processing. However, multi
resolution segmentation is usually uncontrolled 
and relies on parameter adjustment. The triangu
lar facets that consist of vertices are objects, and 
the Voronoi polygons in which the sampling 
points are located also are objects. The shape, 
size, and position of each object are controllable. 
The proposed TIN-based LSC calculation method 
can directly calculate the basic terrain attributes 
for triangular facets and Voronoi polygon objects. 
This approach presents a new opportunity for the 
classification of hillslope units in the future.

5.3 Implications of the mathematical vector for 
LSCs definition and calculation in geoscience

LSCs are widely used in natural hazard susceptibility 
assessments, natural potential evaluation, the mapping 
of landforms, land surface segmentation and classifica
tion, the processing of LIDAR data, topographic visuali
zation, and other geoscience tasks (Jasiewicz and 
Stepinski 2013; Garosi et al. 2018; Khosravi et al. 2018; 
Chen et al. 2018; Rahmati, Reza Pourghasemi, and 
Melesse 2016; Chen et al. 2017). However, as Minár, 
Evans, and Jenčo (2020) noted, the use of LSCs in most 
applications is driven by GIS software capabilities but 
not supported by theory, which may lead to confusion 
in concept and definition. On the one hand, the lack of 
understanding can be attributed to the diverse handling 
and interpretation of LSCs in GIS software (Schmidt, 
Evans, and Brinkmann 2003). On the other hand, the 
LSCs system is both theoretically and mathematically 
complex (Florinsky 2017). Although a comprehensive 
definition of the LSCs system has been established in 
geoscience (Evans 1980; Shary 1995; Shary, Sharaya, and 
Mitusov 2002; Minár, Evans, and Jenčo 2020), the corre
sponding theory still does not involve LSC calculations 
based on non-Grid-DEMs. As stated in the introduction 
section, the applications of TINs in geoscience become 
increasingly common, which means that the LSCs calcu
lation method based on TINs is urgent and necessary. 
Our proposed framework re-explores LSCs from the 
perspective of mathematical vector theory, and uses 
the concept of curvature tensor to re-explain and re- 
calculate the commonly used LSCs. Our research can 
improve the general understanding of the LSCs system 
and support LSCs calculations based on TINs, point 

clouds or other structures. Our proposed framework is 
not only an improvement on and supplement to the 
current LSCs system but also an advancement in land 
surface analysis based on the structure of TINs. Due to 
the widespread lack of analytical methods for this data 
model, the application potential of TINs in geoscience 
research has been underestimated. Based on the theory 
of mathematical vectors, we preliminarily explore the 
application of TINs in land surface analysis. We believe 
that this approach will provide new ideas for other 
geoscience studies.

6 Conclusion

Considering the research gap regarding LSC calcu
lations based on TINs, in this study, we propose 
a mathematical vector framework to enhance LSC 
system theory. In this framework, LSC can be cal
culated based on both triangular facets and ver
tices, and the selection of weighting methods in 
the framework is flexible. We use the concept of 
the curvature tensor to interpret and calculate the 
commonly used LSC, which provides a new per
spective in geoscience research. We also investi
gate the capacity of the TIN-based method to 
perform LSCs calculations and compare it with 
grid-based methods. Based on a mathematically 
simulated surface, we reach the following conclu
sions. First, the TIN-based method has similar scale 
effects to the grid-based methods of EVANS and 
ZEVENBERGEN. Second, the TIN-based method is 
less error sensitive than the grid-based methods 
by the EVANS and ZEVENBERGEN polynomials for 
the high error DEMs. Third, the shape of the TIN 
triangles exerts a great influence on the LSCs cal
culation, which means that the accuracy of LSCs 
calculation can be further improved for optimized 
TIN using weighting methods less sensitive to the 
shape of the TIN.

Based on three real landform units and respec
tive different data sources, we discuss the possi
ble applications of the TIN-based method, e.g. the 
classification of land surface concavity–convexity 
and hillslope units. We find that the TIN-based 
method can produce structurally and visually bet
ter classification results than the grid-based 
method. This qualitative comparison reflects the 
potential of using TINs in multiscale geoscience 
research and the capacity of the proposed TIN- 
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based LSC calculation methods. Our proposed 
mathematical vector framework for LSCs calcula
tions from TINs is a preliminary approach to miti
gate the multiple-scale problem in geoscience. In 
addition, this research integrates mathematical 
vector and geographic theories and provides an 
important reference for geoscience research.
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