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Slope condition and early warning

¢ Condition monitoring —
a concept borrowed from
civil engineering
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Detection of Detection of
deterioration failure

Slope condition and early warning

M
l Early warning?

Stable

High

* Maximise the time from Failure threshold
detection of deterioration

onset to point of failure

Stability

Low
_[Emplacement

Landslide Age

>
o
After Briggs et al., 2019. 4 @
International Conference on Smart Infrastructure and Construction (ICSIC)



Detection of
Detection of failure

Slope condition and early warning  ceerioraion

* Pathway of stability curve
may be complex
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Landslide investigation tools — getting a clear picture
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Landslide investigation tools — getting a clear picture

* Remote sensing

d — UAV/InSAR

\\\‘\ — Observations / measurements
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Landslide investigation tools — getting a clear picture
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* Intrusive investigations / observations
— Boreholes / trial pits / sensors
— Observations / field and lab tests




Landslide investigation tools — getting a clear picture
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* Near-surface geophysics
— Non-invasive surface measurements
— Proxies of ground condition



Landslide investigation tools — getting a clear picture
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* An integrated approach!
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* “..monitoring changes in the landslide mass by -z,
observing physical parameters of soil or rock Z
masses (e.g., density, acoustic/elastic
parameters, resistivity)”

(Pecoraro et al., 2019)
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Pecoraro et al., 2019. Landslides.
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* “Measurements ... fo produce cross-sections or
volumetric models of the subsurface”

(Whiteley et al., 2021) Pecoraro et al., 2019. Landslides.

* No imaging capability in the ‘geophysical’ methods identified by Pecoraro et al. (2019) —
mostly applied to fast-moving slides (e.g., debris flows)

* Geophysical imaging — longer lead times to failure by considering whole-slope ~



Developments in geophysical monitoring

Increasing capability of time-lapse ..

geophysical imaging systems

Systems reaching maturity, but g
not (currently) integrated in to H
operational LOLEWS :
Distributed Acoustic Sensing

(DAS) systems a very recent
development being applied to .

landslide monitoring

2006 2007 2008

2009

Geophysical monitoring
method

Electrical resistivity (ER)

Seismic ambient
noise tomography (S-ANT)

*  Seismic cross-correlation (3-CC)

L] » Seismic event detection,
characterisation and location (S-EDCL)

» Seismic horizontal-to-vertical
ratio (S-H/V)

*  Self-potential (SP)
Seismic refraction (SR)

Surface waves (SW)
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Seismometers used
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Local landslide early warning systems (LOLEWS)

DESIGN

* Adapting the framework by Intrieri et al. (2013):

“Education” -> “Decision support”
“Population involvement” -> “Stakeholder

involvement”

“Instrument installation / data collection /
transmission” -> single activity

“Data interpretation” -> part of monitoring
“Data elaboration” -> part of forecasting

*Geological knowledge
*Risk scenarios
*Design criteria
*Choice of geo-

indicators

MONITORING

eInstruments
installation,
data collection
and data transmission
*Data interpretation

FORECASTING

*Data elaboration
*Comparison with
thresholds
*Forecasting methods
*Warning

DECISION SUPPORT

v

*Risk perception
«Safe behaviours
*Response to warning
Stakeholder

involvement
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After Intrieri et al., 2013. Nat, Hazards Earth Syst. Sci.



Reconnaissance

geophysical
GEOLOGICAL survey(s) Rapid reconnaissance
KNOWLEDGE Geoelectrics Seismic refraction ground model

Resistivity
Self-potential

P-wave velocity
S-wave velocity

The “case” for
geophysical imaging

DESIGN

I

Detailed geophysical

CHOICE OF GEO-INDICATORS

1

Geotechnical observations Detailed

| =

and / or measurements survey(s) ground model
In LOLEWS  ——
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- 14 Installation of Near-real ti samples Suction Shear modulus
* Not a replacement for established © +[ geophysical A Young's moduius
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approaches -> identify areas where Z | (iiion orsensors
. . . = to monitor other A 4
geophysical information (and geo-indicators - _
. . ELABORATION RISK N;tr:‘y‘;'i'g:l”
related activities) can supplement v , SCENARIOS|  2uSiiR
- . COMPARISON Near-real time 4D P
and / or enhance eX|St|ng data WITH THRESHOLDS petrophysical / <
(ZD geomechanical models
e Teubsurtace. [
< properties
(3) :I WARNING FORECASTING
w v v
% Geophysical Subsurface, volumetric ] { Near-real-time modelling ]
T8 | thresholds monitoring of properties of slope stability from
indicating failure 4" preceding failure conditions slope-scale models
el v v
okx -
' ' n 9 STAKEHOLDER automatedivarning Web-dashboard for /\
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Reconnaissance
geophysical
GEOLOGICAL survey(s) Rapid reconnaissance
= KNOWLEDGE Geoelectrics Seismic refraction ground model
. O Resistivity P-wave velocity
L O L EWS d e S I n CT) Self-potential S-wave velocity
9 i
o CHOICE OF GEO-INDICATORS ¢
Geotechnical observations Detailed geophysical Detailed
and / or measurements survey(s) ground model
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LoLEWS design

* Petrophysical models -> slope-scale soil property estimation "

DESIGN

Reconnaissance
geophysical
GEOLOGICAL survey(s)
KNOWLEDGE Geoelectrics Seismic refraction

Resistivity P-wave velocity

Self-potential S-wave velocity

CHOICE OF GEO-INDICATORS l
Geotechnical observations Detailed geophysical
and / or measurements survey(s)

Rapid reconnaissance
ground model

Detailed
ground model
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LoLEWS monitoring

* 4D geophysical models

06/02/2018 BEGINNING OF 06/06/2018

P 05/04/2018 GnoWMELT SEASON "
Propagation of wetting
front down slip face
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down lip face

Wetting at surface Wetting at surface

11/08/2018 END OF 03/10/2018
s SNOWMELT SEASON 05/12/2018
Drying at surface Drying at surface Changes become less pronounced

with return to baseline conditions_

06/02/2019 03/04/2019  BEGINNING OF 04/06/2019
SNOWMELT SEASON
Propagation of wetting
face

Propagation of wetting
{ronk town o front down slip face

Localizeg freezing

Wetting at surface

05/08/2019 END OF 06/10/2019 05/12/2019
SNOWMELT.SEASON

Propagation of wetting Localized freezing
front down sip face

Drying at surface
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Near Surf. Geophys.

INSTRUMENT INSTALLATION,
DATA COLLECTION
AND TRANSMISSION

Installation of
geophysical
monitoring system

Installation of sensors
to monitor other

MONITORING

geo-indicators

= /D resistivity

DATA
INTERPRETATION

Near-real time

4D geophysical
| models



LoLEWS monitoring

and forecasting
* 4D geophysical models
* 4D petrophysical models

06/02/2018

l.ocahze\lreaﬂnn

11/08/2018 END OF
SNOWMELT SEASON

Drying at surface

06/02/2019

Localizeg freezing

05/08/2019 END OF
SNOWMELT.SEASON

Propagation of wetting
front down slip face
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Holmes et al., 2020.
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INSTRUMENT INSTALLATION,
DATA COLLECTION
AND TRANSMISSION

Installation of
geophysical
monitoring system

Installation of sensors
to monitor other

MONITORING

geo-indicators

COMPARISON
WITH THRESHOLDS

S
Time-series of

DATA
INTERPRETATION

subsurface |«
properties

Near-real time
4D geophysical
models

DATA

Near-real time 4D
petrophysical /
geomechanical models

WARNING

ELABORATION

FORECASTING

Geophysical |«
| thresholds

indicating failure
-—_—

FORECASTING

= /D resistivity

4D MOISIUre ——

Subsurface, volumetric

monitoring of properties
preceding failure conditions

Near-real-time modelling

of slope stability from
slope-scale models
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Web-dashboard for
monitoring slope condition
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generation based on
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BGS & ITM Monitoring

LoLEWS decision

support

* Information and
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Alarm Status

Ability to define sub-volumes — intention is to make this user definable and sub-volumes can then be treated as individual sensors.

This means resistivity and GMC data can be plotted and used to trigger alarms etc.
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SOURCES OF UNCERTAINTY

Uncertainties in geophysical imaging “omeviym
representativeness

« Scaling properties from lab-scale
to slope-scale

O
=
©
O
=
5

- - . E
Geophysical images produced from a process of =lopeecaic guophysical sdiveys: |

. . e + Survey design
data inversion — fitting a model to real-world data - Survey conditions
« Measurement quality
« Inversion uncertainty

Different methods have different (and overlapping) » Presonco of unfavourable

hydrogeological conditions for

sensitivities to different soil properties gecpysics

Non-geophysical point sensors:
» Quality and representativeness of

Many geophysical surveys still rely on expert measurements

» Scaling properties from point

opinion to process and interpret data Sl e soie s

Thresholds:
« Accurate identification / prediction

Petrophysical transforms rely on extrapolation of dhrsshets
small-scale properties to slope-scale Data elaboration:

» Accuracy / limitations of
petrophysical relationships

DESIGN

I F ORECASTING

I DECISION SUPPORT

End-user:
» Understanding / confidence of data




BGS PRIME ERT monitoring
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Conclusions

* Geophysical imaging provides unique insights in to slope-scale processes at the
whole-slope scale, which supplements remotely sensed and intrusive observations

* Holistic assessment of the whole-slope reveals slope condition,
identifying periods of vulnerability

* Geophysical imaging systems are ready
for inclusion in LOLEWS, and can
supplement existing strategies



Thank you for reading

Questions?

This talk is based on:

Mat. Hazards Earth Syst. Sci., 21, 3863-3871, 2021
hittps:iidoi org/ 10.5194/nhess-21-3863-2021
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Abstract. We ise the ibution of physi

imaging tolocal landslide early waming systems (Lol EWS),
highlighting how the design and monitoring components of
LolLEWS henefit from the enhanced spatial and temporal res-
olutions of time-lapse geophysical imaging, In addition, we
discuss how with i based i
cal transforms, geophysical data can be crucial for future

due in i and databases
and because of their low cost of implementation and low
impact on the environment. LEWS am commonly divided
into two groups: territorial landslide early waming systems
(TeLEWS; also known as geographical landslide early warn-
ing systems). covering large areas at the catchment or multi-
«catchment scale and encompassing many vulnerable slopes
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