

Terrestrial Carbon Dynamics through Time

insights from downcore compound-specific radiocarbon dating

Rienk H. Smittenberg a,b*

V Galy^c, SM Bernasconi^b, M Gierga^{b,d}, A Birkholz^{b,e}, I Hajdas^f, L Wacker^f, N. Haghipour^b, M. Usman^{b,g}, C. Ponton^{c,h}, L. Giosan^c, TI Eglinton^b

^a Department of Geological Sciences, Stockholm University, Sweden
 ^b Geological Institute, ETH Zurich, ^c Woods Hole Oceanographic Institution, USA
 ^d now at Institute of Geology and Mineralogy, University of Cologne, Germany
 ^e now at Department of Environmental Sciences, University of Basel, Switzerland
 ^f Laboratory of Ion Beam Physics, ETH Zurich, Switzerland
 ^g now at Department of Mechanical and Industrial Engineering, University of Toronto, Canada
 ^h now at Geology Department, Western Washington University, USA

- How has the Terrestrial Carbon Stock changed since the LGM?
- Role of early humanity?
- Role of climate changes?

Shi et al (2020) Nat. Geosci.

APPROACH

The ¹⁴C AGE of Terrestrial Carbon informs about its (storage) history

'snapshots' of Ecosystem carbon

EXAMPLES FROM AROUND 10 DOWNCORE PROFILES

^{*} Unpublished data

Lake Lusvatnet, Lofoten, Norway

3. Branched GDGTs ages (from soil microbes) reflect mostly bulk C but also show some enigmatic ages

Small catchment steep slopes

2. Eroded Carbon reflects small catchment with fast C turnover

OR

Only release of young OC from soil surface (no erosion)

1. After Younger Dryas, release of ancient (permafrost? Bølling-Allerød?) Carbon

Lake Lusvatnet, Lofoten, Norway

Different to Saanich Inlet

3. Branched GDGTs ages (from soil microbes) reflect mostly bulk C but also show some enigmatic ages

Small catchment steep slopes

2. Eroded Carbon reflects small catchment with fast C turnover

OR

Only release of young OC from soil surface (no erosion)

1. After Younger Dryas, release of ancient (permafrost? Bølling-Allerød?) Carbon

Gierga et al (2016) QSR 144, p123 Long-stored soil carbon released by prehistoric land use: Evidence from compound-specific radiocarbon analysis on Soppensee lake sediments

Schefuss et al (2016) Nat Geosci 2778 hydrological control of carbon cycling and aged carbon discharge in the Congo Rive Basin

Congo Basin, Africa

Explanations:

- 1. Buildup of old carbon and 'sampling' of this in sed. record ('Saanich' type)?
- 2. Dryer = degradation (drying) of old wetland peats → Export of old Carbon
- 2b. Human perturbance? ('Soppensee' type)

rienk.smittenberg@geo.su.se

- 1. Cold, high latitudes: ongoing buildup of Carbon (long-term sink)
- 2. Mid-low latitudes: dynamic steady state ruled by long-term (hydro)climate
 - * Wet (stable) conditions tend to give a 'young' signal in sediment:
 - = <u>ecosystem stabilization (Catch)</u>, with only surface export ('Soppensee style')

or

- = more export & higher soil carbon turnover
- * (seasonal) dryness tends to give an 'old' signal:
 - = <u>erosion of old C stocks (Release)</u>
 or
 - = less export (runoff) and thus **build-up** of C stock (**Catch**, 'Saanich style')

Disentangling these opposing mechanisms is a challenge

- 3. Long-stored Carbon is being (has already been) eroded away
 - a) because of human perturbance
 - b) due to climatic variability (drying / erosion)