Enhancing Kathmandu's Urban Design Through Implementation of Green Infrastructures

Rupesh Shrestha ^{1, 2} Robert Jüpner ¹ Thomas Thaler ³

¹ Institute of Water Management and Hydraulic Engineering, Technische Universität Kaiserslautern, Germany

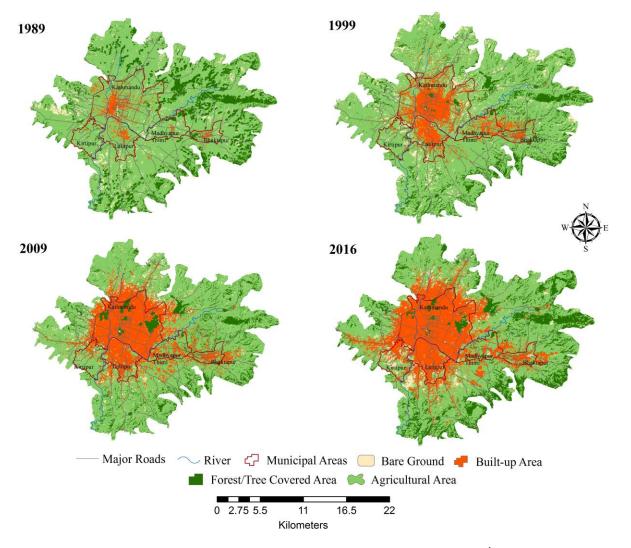
- ² Fellow of Alexander von Humboldt (AvH) Foundation
- ³ Institute of Mountain Risk Engineering, University of Natural Resources and Life Sciences, Vienna, Austria

HS5.10: Green infrastructure for sustainable urban hazard management (26th May 2022)

Urban settlement of Kathmandu valley, Nepal

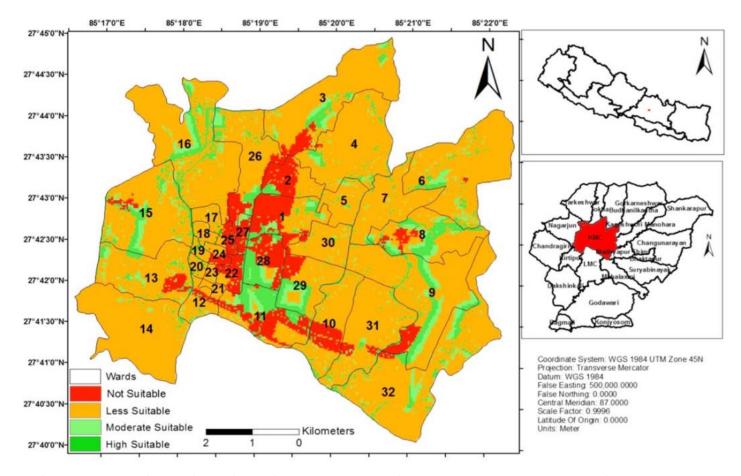
Tangible heritage

Intangible heritage



Introduction

- Unplanned urbanization; demographic and environmental change
- Loss of green space
- 450% urban growth between 1978 and 2000
- Low rate of urban green space in Kathmandu city (3% of total area)
- Earthquake, floods, & environmental problems
- Loss of human life/health & habitats
- Urban expansion dominating natural networks that provide multi-functions for both human and ecology

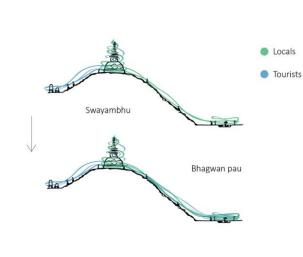


Land use land cover change in Kathmandu Valley from 1989 to 2016 (Source Ishtiaque et al 2017).

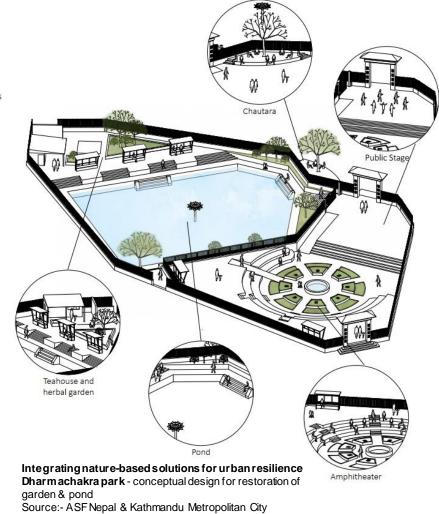
Green space suitability map of Kathmandu city

Parameters used:

- Accessibility
 - Emergency road
 - Physical site condition
 - Slope; facilities; location: LULC
- Socio-economic status
 - Population; density; historical & cultural sites
- Environmental criteria
 - Existing park; water bodies


Source: Pokhrel, Shiva. "Green Space Suitability Evaluation for Urban Resilience: An Analysis of Kathmandu Metropolitan City, Nepal." *Environmental Research Communications* 1, no. 10 (November 1, 2019): 105003. https://doi.org/10.1088/2515-7620/ab4565.

Land scarcity in Kathmandu's highly dense areas means limited space for blue-green infrastructures, implies that higher efficiency and adaptability in urban blue-green infrastructure development is needed.


Approximately 5.7 sq. km. of public area is suitable as open green space inside Kathmandu city.

Practical example: Dharmachakra park, Bhagwan pau, Kathmandu

Optimizing green infrastructures:

Individual Nature-based solutions

Bioswales

Bio retention basins

Water retention ponds

Infiltration trenches

Permeable paving

Aspern Seestadt, Vienna

Wulzendorferstraße, 1220 Vienna

Nordmanngasse, 1210 Vienna

Aspern Seestadt, Vienna

Stempelingeranger, 81737 München

- Iwaszuk et. al. Addressing Climate Change in Cities: Catalogue of Urban Nature-Based Solutions. Krakow; Berlin: Sendzimir Foundation: Ecologic Institute, 2019.
- Freie Hansestadt Bremen. Merkblatt Für Eine Wassersensible Stadt- Und Freiraumgestaltung, 2015.
- Grimm, Karl. "Integratives Regenwassermanagement: Beispielsammlung." Vienna, Austria: Magistrat der Stadt Wien, Wiener Umweltschutzabteilung – MA 22, 2010.

Issues in implementation

Issues	Sub-issues
Varying Hydroclimatic & geographical conditions	Lack of data & analysis capabilitiesUncertainties due to climate change
Land use competition	Scarcity of space for infrastructureTerritorial inequalities
Technical & human resource constraints	Modelling capabilitiesDesign & construction challengesLack of skilled manpower
Awareness on importance of blue green infrastructure	Lack of knowledge on BGI & conceptual unclarityInstitutional experiences
Financial incentives	Lack of fundingEstimating cost of inaction
Cultural & Social process	Consensus building
Governance & Institutions	 Managerial, political and legislative realms Missing strategic vision & integrated planning Lack of leadership; Competing priorities
Maintenance after project completion	Monitoring & maintenance protocolsAdded financial burden for maintenance of infrastructure

Recommendations

Detailed technical guidelines & capacity building

Policy frameworks for urban blue-green infrastructures

Thank you!

Contact:

Rupesh Shrestha

Research fellow in the Water Management and Hydraulic Engineering unit Department of Civil Engineering, Technische Universität Kaiserslautern Kaiserslautern, Germany

Email:- <u>shrestha@rhrk.uni-kl.de</u> <u>rupeshshrestha2005@gmail.com</u>

https://meetingorganizer.copernicus.org/EGU22/EGU22-13180.html

How to Cite: Shrestha, R., Jüpner, R., and Thaler, T.: Enhancing Kathmandu's Urban Design Through Implementation of Green Infrastructures, EGU General Assembly 2022, Vienna, Austria, 23–27 May 2022, EGU22-13180, https://doi.org/10.5194/egusphere-egu22-13180, 2022

Acknowledgements:

Unterstützt von / Supported by

Alexander von Humboldt
Stiftung / Foundation

