

Investigating a redistribution of naturally occurring radioactive material (NORM) in dwelling walls

Jens Fohlmeister, Bernd Hoffmann

Federal Office for Radiation Protection, Germany

First part will be discussed in the 5-minute presentation Second part is display material only – but highly interesting nevertheless.;)

Model room

Dose at a point in a dwelling:

$$D=5.77*10^{-13}*C*\rho\;\sum_{i}E_{i}\gamma_{i}\frac{\mu_{En}}{\rho_{i}}\iiint_{wall}\frac{B_{i}\exp(-\mu_{i,c}s)}{4\pi l^{2}}dxdydz$$
 with build-up factor B after Berger-Model

Model room

Dose at a point in a dwelling:

$$D=5.77*10^{-13}*C*\rho\;\sum_{i}E_{i}\gamma_{i}\frac{\mu_{En}}{\rho_{i}}\iiint_{wall}\frac{B_{i}\exp(-\mu_{i,c}s)}{4\pi l^{2}}dxdydz$$
 with build-up factor B after Berger-Model

4,0 m

Room centre:

* Index formula (Markkanen, 1995)

$$I = \frac{C_{226_{\text{Ra}}}}{300} + \frac{C_{232_{\text{Th}}}}{200} + \frac{C_{40_{\text{K}}}}{3000}$$

* Quadratic index formula (CEN/TR 17113)

$$\mathsf{D} = \begin{bmatrix} [281 + 16.3\rho d & -0.0161(\rho d)^2] * \mathcal{C}_{^{226}Ra} \\ [319 + 18.5\rho d & -0.0178(\rho d)^2] * \mathcal{C}_{^{232}Th} \\ [22.3 + 1.28\rho d & -0.00114(\rho d)^2] * \mathcal{C}_{^{40}K} \end{bmatrix} * 10^{-6}$$

D: dose at room midpoint

d: wall thickness

ρ: building material density

C: activity concentration

Wall thickness = 0.2 m Density = 2350 kg/m3

Similar plots for all other points in room available!

Wall thickness = 0.2 m Density = 2350 kg/m3

Similar plots for all other points in room available!

Wall thickness = 0.2 m Density = 2350 kg/m3

Similar plots for all other points in room available!

Thought experiment:

Would a redistribution of radionuclides (e.g., radionuclide free floor and ceiling – but accordingly higher concentrations in walls) lead to a reduction in the dose at the room centre?

Dose at room centre:

- 1) Equal act. concentration in walls, floor and ceiling: $[C_{Ra}, C_{Th}, C_K] = [80, 80, 800]$ Bq/kg
 - → additional annual effective dose: ~ 0.77 mSv/a
- 2) No nuclides in floor and ceiling, but in walls ($\Sigma N_1 = \Sigma N_2$): $[C_{Ra}, C_{Th}, C_K] = 1.686 * [80, 80, 800] \text{ Bq/kg}$
 - → additional annual effective dose: ~ 0.67 mSv/a
- → <u>Dose reduction by ~13%</u>

Wall thickness = 0.2 m Density = 2350 kg/m3

Similar plots for all other points in room available!

Thought experiment:

Would a redistribution of radionuclides (e.g., radionuclide free floor and ceiling – but accordingly higher concentrations in walls) lead to a reduction in the dose at the room centre?

Dose at room centre:

- 1) Equal act. concentration in walls, floor and ceiling: $[C_{Ra}, C_{Tb}, C_{K}] = [80, 80, 800] \text{ Bg/kg}$
 - → additional annual effective dose: ~ 0.77 mSv/a
- 2) No nuclides in floor and ceiling, but in walls ($\Sigma N_1 = \Sigma N_2$): $[C_{Ra}, C_{Th}, C_K] = 1.686 * [80, 80, 800] \text{ Bq/kg}$
 - → additional annual effective dose: ~ 0.67 mSv/a
- → Dose reduction by ~13%

Attention! Result only valid for room centre in model room. How about dose for room average?

→ see display material

Wall thickness = 0.2 m Density = 2350 kg/m3

Similar plots for all other points in room available!

Thought experiment:

Would a redistribution of radionuclides (e.g., radionuclide free floor and ceiling – but accordingly higher concentrations in walls) lead to a reduction in the dose at the room centre?

Display Material

Slightly higher dose near the walls compared to room centre.

Dose average of the room is slightly higher than dose at room centre.

Wall thickness = 0.2 m Density = 2350 kg/m3

Contour plot height at 1.25 m

Thought experiment:

Would a redistribution of radionuclides (e.g., radionuclide free floor and wall – but accordingly higher concentrations in walls) lead to a reduction in the dose at the room centre and room average?

Radionuclide redistribution:

To maintain the same amount of radionuclides, when floor and ceiling are nuclide-free, walls need 1.686 times higher concentration.

$$[C_{Ra}, C_{Th}, C_{K}] = [80, 80, 800] Bq/kg$$

$$[C_{Ra}, C_{Th}, C_{K}] = 1.686*[80, 80, 800] Bq/kg$$

Contour plot height at 1.25 m

Thought experiment:

Would a redistribution of radionuclides (e.g., radionuclide free floor and wall – but accordingly higher concentrations in walls) lead to a reduction in the dose at the room centre and room average?

Radionuclide redistribution:

To maintain the same amount of radionuclides, when floor and ceiling are nuclide-free, walls need 1.686 times higher concentration.

$$[C_{Ra}, C_{Th}, C_{K}] = 1.686*[80, 80, 800] Bq/kg$$

Contour plot height at 1.25 m

- stronger gradient between walls and room centre compared to original scenario
- lower dose at centre but larger at locations close to the walls
- higher average room dose

Thought experiment:

Would a redistribution of radionuclides (e.g., radionuclide free floor and wall – but accordingly higher concentrations in walls) lead to a reduction in the dose at the room centre and room average?

Radionuclide redistribution:

To maintain the same amount of radionuclides, when walls are nuclide-free, floor and ceiling need 2.46 times higher concentration.

$$[C_{Ra}, C_{Th}, C_{K}] = [80, 80, 800] Bq/kg$$

$$[C_{Ra}, C_{Th}, C_{K}] = 2.46*[80, 80, 800] Bq/kg$$

Contour plot height at 1.25 m

Thought experiment:

Would a redistribution of radionuclides (e.g., radionuclide free floor and wall – but accordingly higher concentrations in walls) lead to a reduction in the dose at the midpoint?

Radionuclide redistribution:

- inverse and stronger gradient between walls and room centre

compared to original scenario

- larger dose at midpoint but smaller dose at places close to the walls
- lower average room dose by 18 %

To maintain the same amount of radionuclides, when walls are nuclide-free, floor and ceiling need 2.46 times higher concentration.

$$[C_{Ra}, C_{Th}, C_{K}] = 2.46*[80, 80, 800] Bq/kg$$

Wall thickness = 0.2 m Density = 2350 kg/m3

Contour plot height at 1.25 m

Thought experiment:

Would a redistribution of radionuclides (e.g., radionuclide free floor and wall – but accordingly higher concentrations in walls) lead to a reduction in the dose at the midpoint?

To sum up

- a redistribution of radionuclides in walls leads to inverse changes of the dose with respect to room centre and room average
- while for room centres the dose decreases slightly if all radionuclides are in walls and none in floor and ceiling, the room average increases
- a redistribution of radionuclides (into floor and ceiling with radionuclide free walls) leads to a reduced average room dose while the dose at the room centre increases

Potential strategies for reduction of radiation exposure

- currently it seems more appropriate to use building materials with higher radionuclide concentration preferably for floor and ceiling (if possible to choose)
- building material with lower radionuclide concentrations should preferably be used for walls
- next steps: * establishing an index formula for non-uniformly distributed radionuclides in building walls
 - * accounting for a second layer of building material