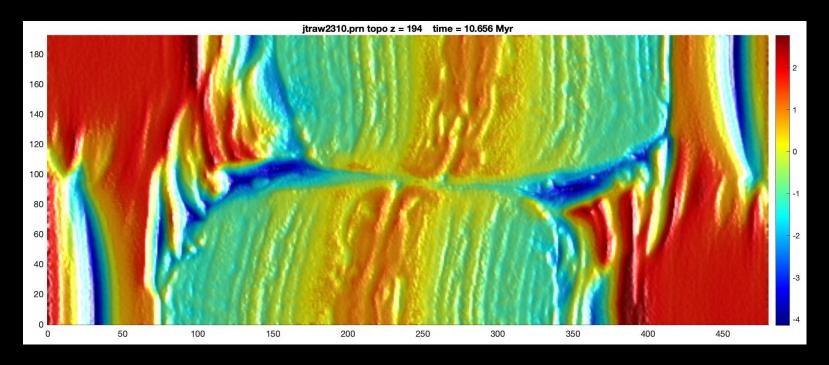
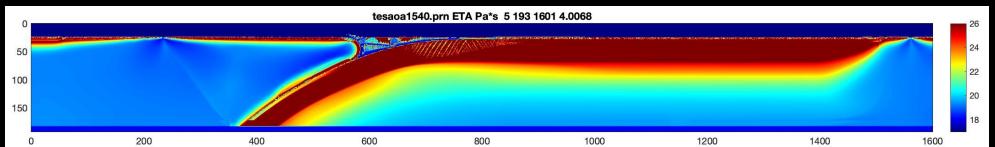
New I3ELVIS: Robust visco-elasto-plastic geodynamic modelling code based on staggered finite differences and marker in cell

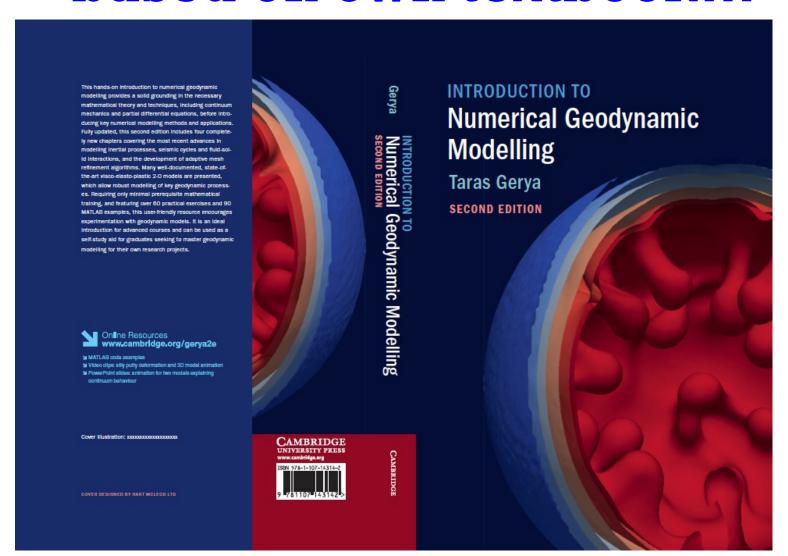




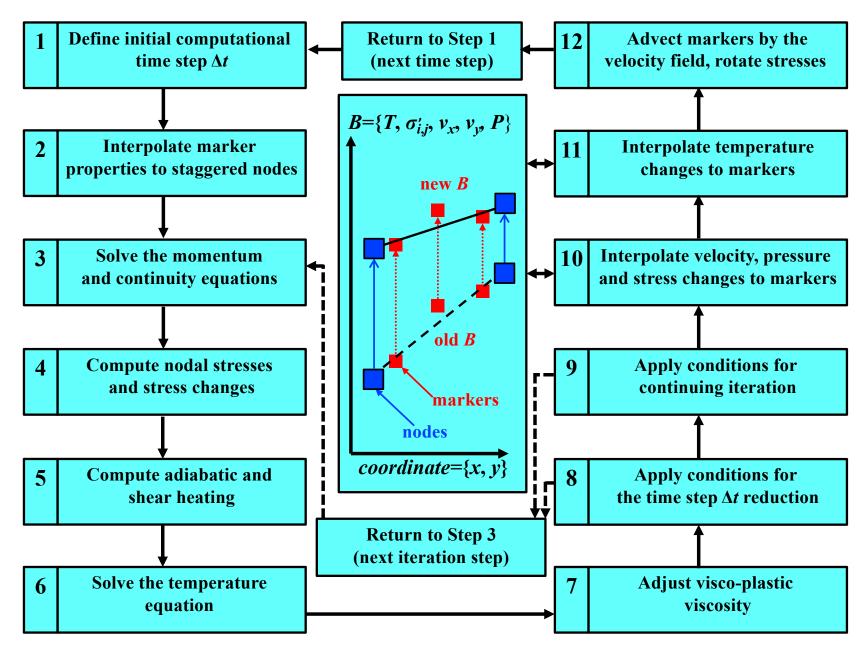
Taras Gerya
Institute of Geophysics, ETH Zurich

Part I

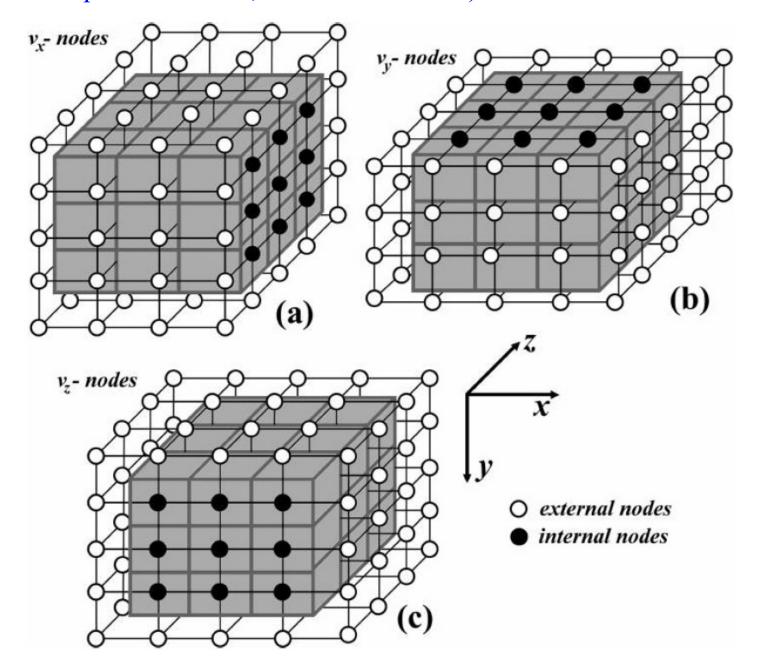
New I3ELVIS development based on own textbook...



New compressible visco-elasto-plastic I3ELVIS: What has been developed (in both C and MatLab)



1. Staggered grid with external velocity, pressure, temperature and stress nodes (temperature is in pressure nodes, not in basic nodes).



2. Fully coupled thermomechanical multigrid solver with global iterations (non-linear feedbacks from shear and adiabatic heating and thermal expansion)

$$\operatorname{div}(\vec{v}) + \beta \frac{DP}{Dt} = \Gamma_{plastic} + \alpha \frac{DT}{Dt}, \qquad (14.3)$$

$$\alpha = -\frac{\partial \ln(\rho)}{\partial T},\tag{14.4}$$

$$\beta = \frac{\partial \ln(\rho)}{\partial P},\tag{14.5}$$

$$\rho C_P \frac{DT}{Dt} = \frac{\partial}{\partial x} \left(k \frac{\partial T}{\partial x} \right) + \frac{\partial}{\partial y} \left(k \frac{\partial T}{\partial y} \right) + H_r + H_a + H_s, \tag{14.6}$$

$$H_s = 2\sigma'_{xx}\dot{\varepsilon}'_{xx(visco_plastic)} + 2\sigma'_{xy}\dot{\varepsilon}'_{xy(visco_plastic)}, \tag{14.7}$$

$$H_a = \alpha T \frac{DP}{Dt}.$$
 (14.8)

Dilatant plastic deformation

$$\Gamma_{plastic} = 2 \sin(\psi) \dot{\varepsilon}_{\Pi(plastic)}$$

Regularised Kelvin plasticity model $\sigma_{yield} = \sigma_c + \gamma_{int} P + \eta_{reg} \dot{\varepsilon}_{II(plastic)}$

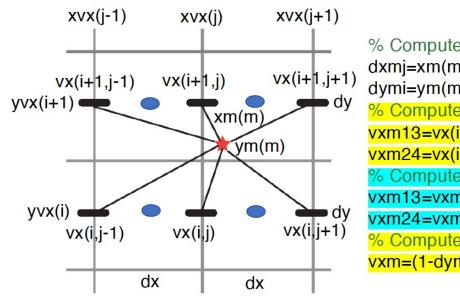
3. Continuity-based marker advection (ultimate MQS advection scheme).

The scheme guarantee bi-linear interpolation of dvx/dx and dvy/dy from pressure nodes where they are defined by solving (in)compressible continuity equation

Modified Quadratic Spline

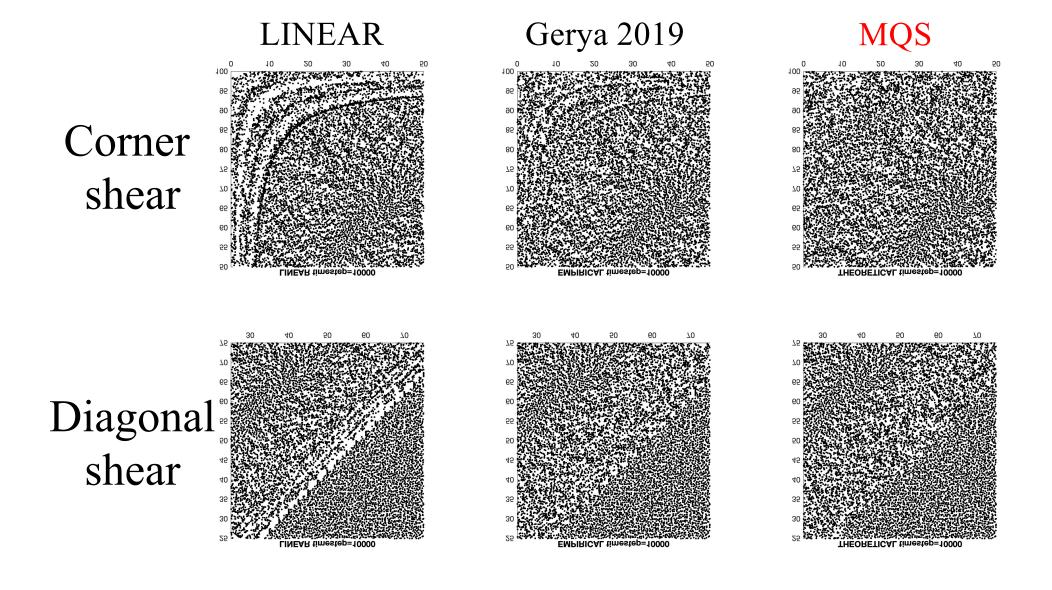
reproduces average velocity in pressure nodes
but not in original velocity nodes

Example of vx interpolation for the regular staggered grid

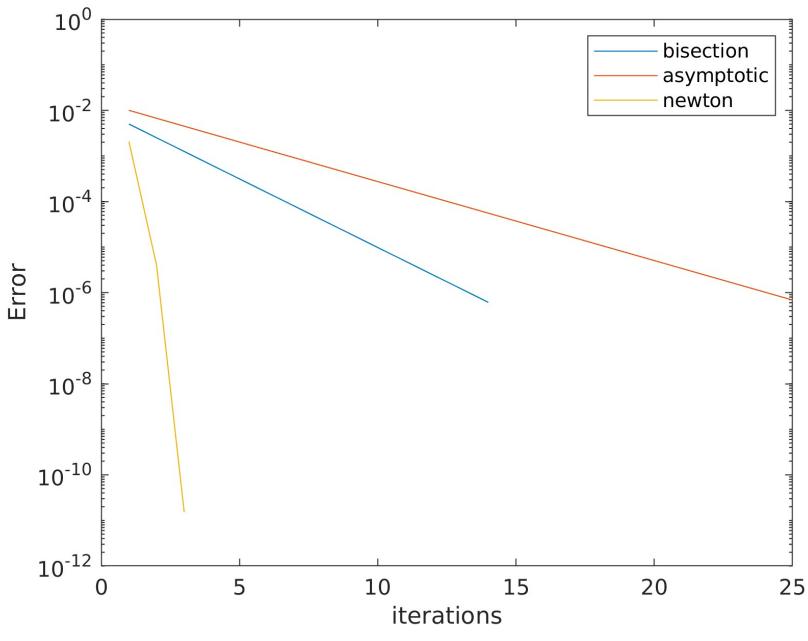


% Compute distances dxmj=xm(m)-xvx(j); dymi=ym(m)-yvx(i);
% Compute vx velocity with bi-linear scheme for the bottom and top vxm13=vx(i,j)*(1-dxmj/dx)+vx(i,j+1)*dxmj/dx; vxm24=vx(i+1,j)*(1-dxmj/dx)+vx(i+1,j+1)*dxmj/dx;
% Compute second order vx correction for the bottom and top vxm13=vxm13+1/2*((dxmj/dx-0.5)^2)*(vx(i,j-1)-2*vx(i,j)+vx(i,j+1)); vxm24=vxm24+1/2*((dxmj/dx-0.5)^2)*(vx(i+1,j-1)-2*vx(i+1,j)+vx(i+1,j+1)); % Compute vx of the marker with bi-linear scheme in vertical direction vxm=(1-dymi/dy)*vxm13+(dymi/dy)*vxm24;

3. Continuity-based marker advection (*ultimate MQS advection scheme*).



4. Newton iteration for dislocation creep to compute effective viscosity for markers



Luca Blum, 2018 (BSc Thesis)

5. Accurate 3D elastic stress rotation for markers

The 3D algorithm can then be summarized as follows (Popov et al., 2014a, personal communication).

(1) Compute the vorticity vector magnitude:

$$\omega_{mag} = \sqrt{\omega_x^2 + \omega_y^2 + \omega_z^2} . \tag{12.38}$$

(2) Compute the unit rotation vector \vec{n} , which also has three components:

$$n_x = \frac{\omega_x}{\omega_{mag}}, \ n_y = \frac{\omega_y}{\omega_{mag}}, \ n_z = \frac{\omega_z}{\omega_{mag}}.$$
 (12.39)

(3) Integrate the incremental rotation angle:

$$\theta = \omega_{mag} \Delta t. \tag{12.40}$$

(4) Evaluate the rotation matrix using the Euler–Rodrigues formula:

$$R_{mat} = \cos(\theta) \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} + \sin(\theta) \begin{pmatrix} 0 & -n_z & n_y \\ n_z & 0 & -n_x \\ -n_y & n_x & 0 \end{pmatrix} + \left(1 - \cos(\theta)\right) \begin{pmatrix} n_x n_x & n_x n_y & n_x n_z \\ n_y n_x & n_y n_y & n_y n_z \\ n_z n_x & n_z n_y & n_z n_z \end{pmatrix}.$$
(12.41)

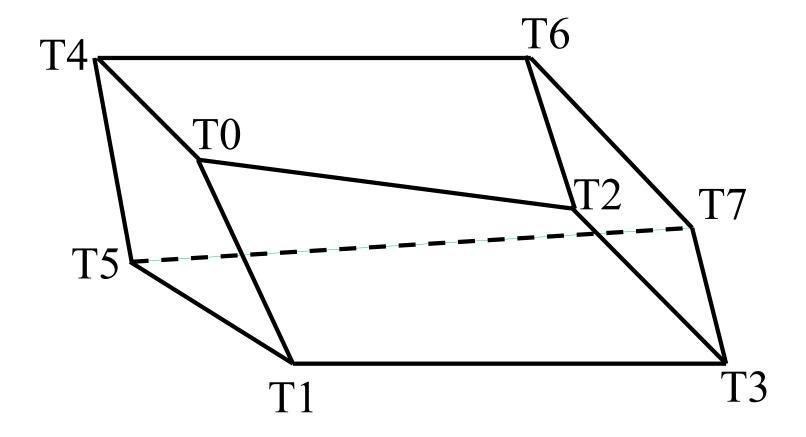
(5) Compute the rotated stress matrix by multiplying R_{mat} , σ' and R_{mat}^{T} matrices:

$$\sigma'_{rotated} = R_{mat} \times \sigma' \times R_{mat}^{T}, \tag{12.42}$$

where R_{mat}^{T} is the *transpose* of the matrix R_{mat} (R_{mat}^{T} is obtained by reflecting the elements of the matrix R_{mat} along its main diagonal).

Anton Popov (personal communication)

6. Arbitrary shapes for thermal and material rectangles

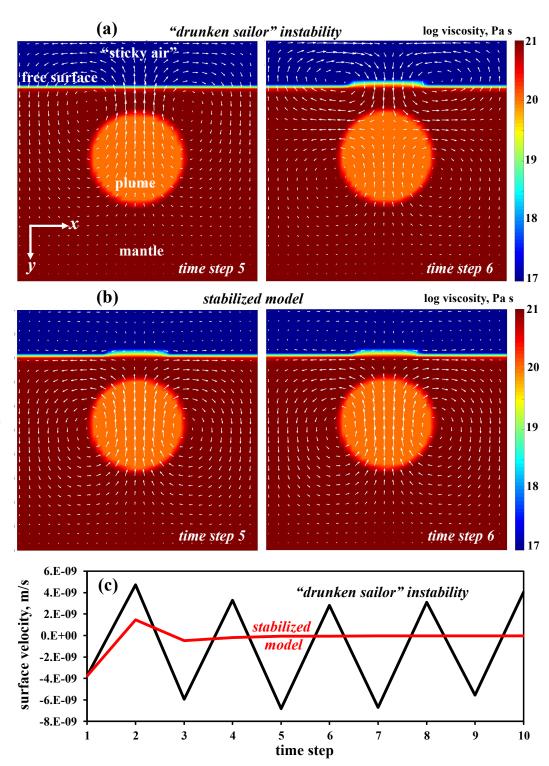


7. Free surface stabilization

$$\rho_{\Delta t} = \rho + \frac{\partial \rho}{\partial t} \Delta t = \rho - v_x \frac{\partial \rho}{\partial x} \Delta t - v_y \frac{\partial \rho}{\partial v} \Delta t,$$

$$\frac{\partial \sigma_{yy}^{'}}{\partial y} + \frac{\partial \sigma_{yx}^{'}}{\partial x} - \frac{\partial P}{\partial y} + \rho_{\Delta t} g_{y} = 0$$

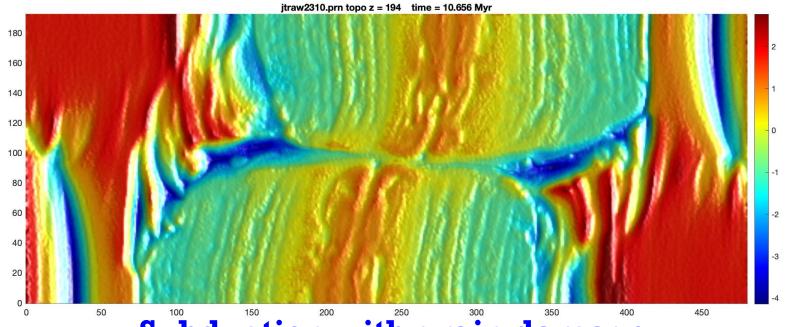
$$\frac{\partial \sigma'_{yy}}{\partial y} + \frac{\partial \sigma'_{yx}}{\partial x} - \frac{\partial P}{\partial y} - g_y \Delta t \left(v_x \frac{\partial \rho}{\partial x} + v_y \frac{\partial \rho}{\partial y} \right) = -\rho g_y$$

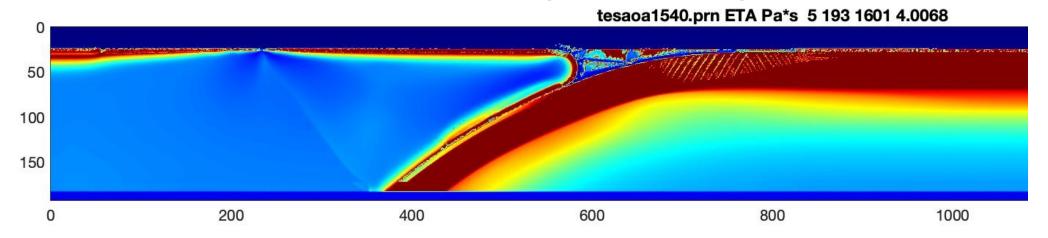


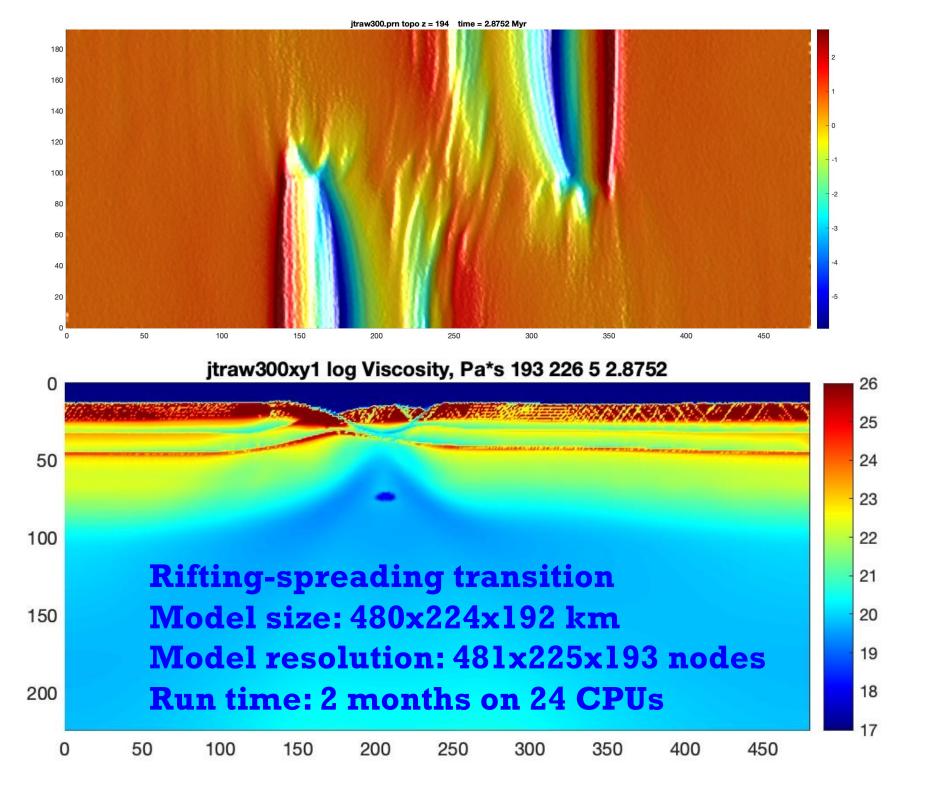
Part II

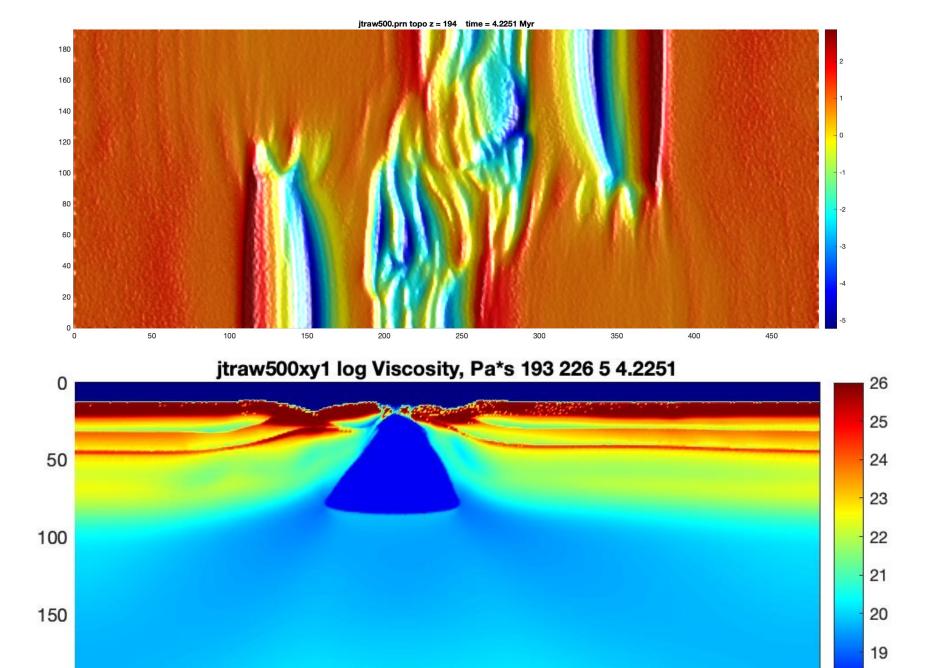
New I3ELVIS model examples:

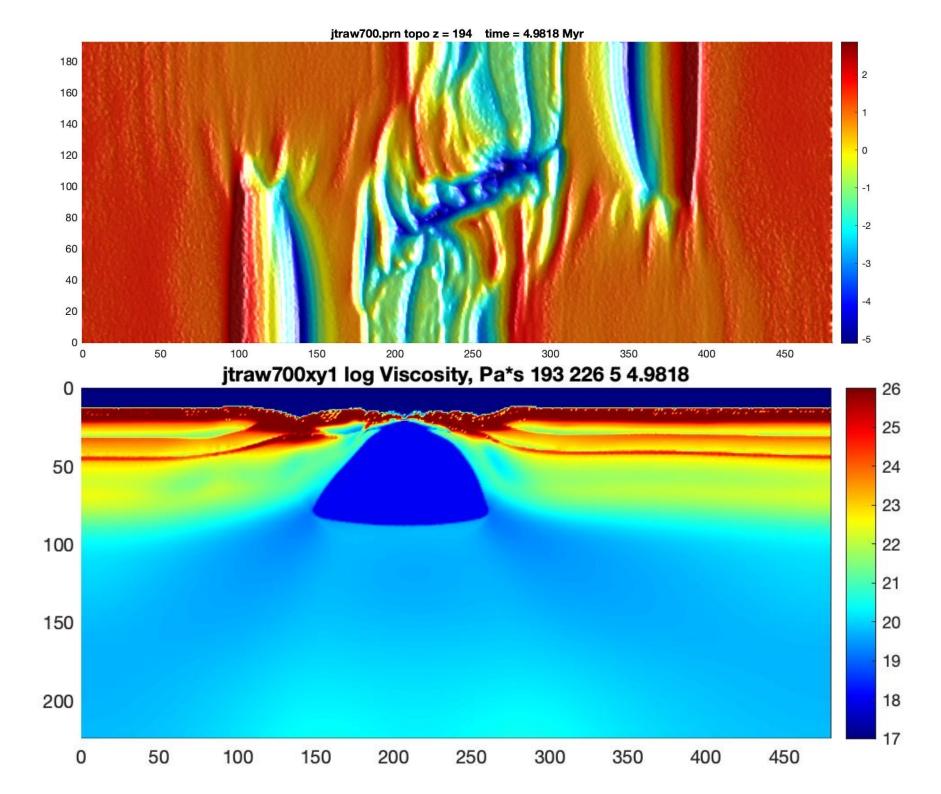
Rifting-spreading transition

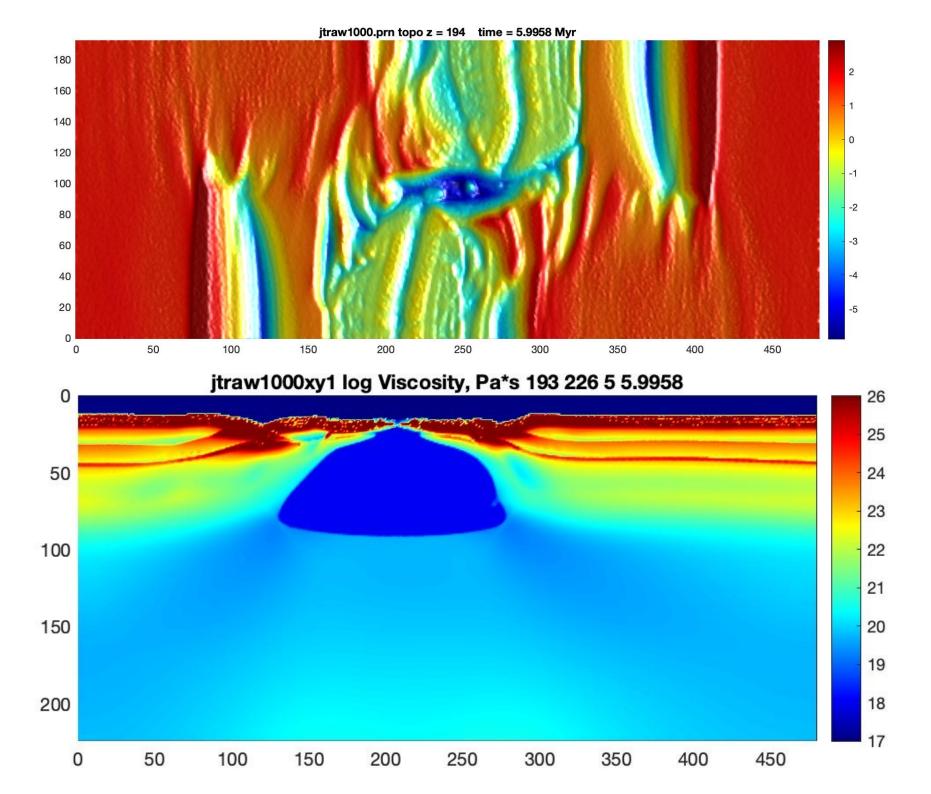


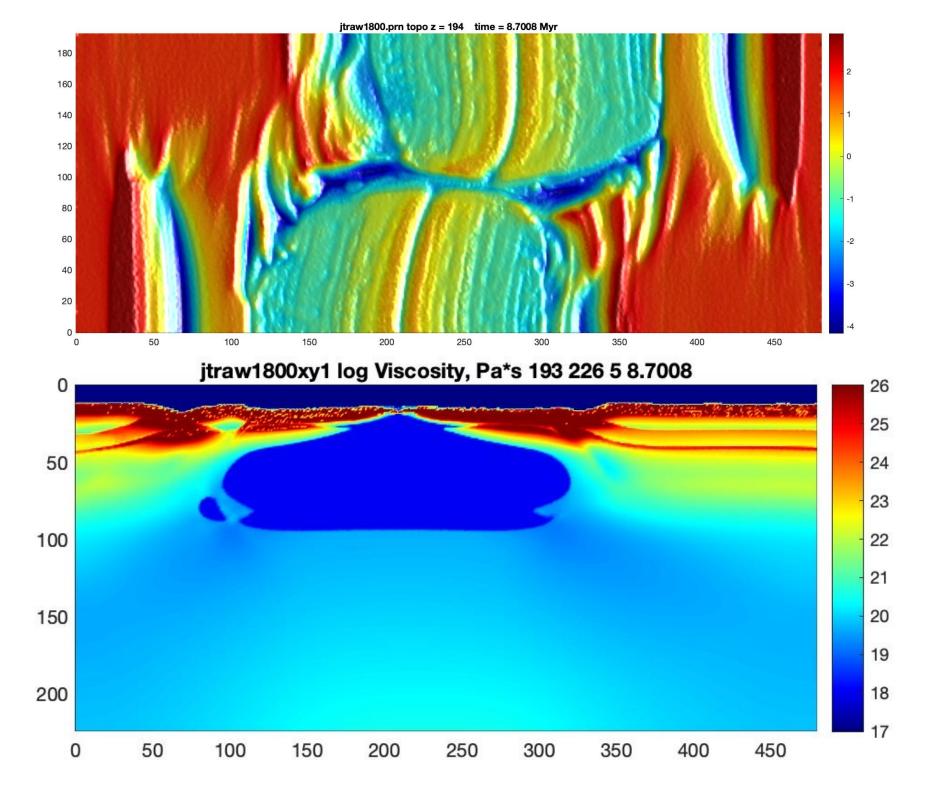


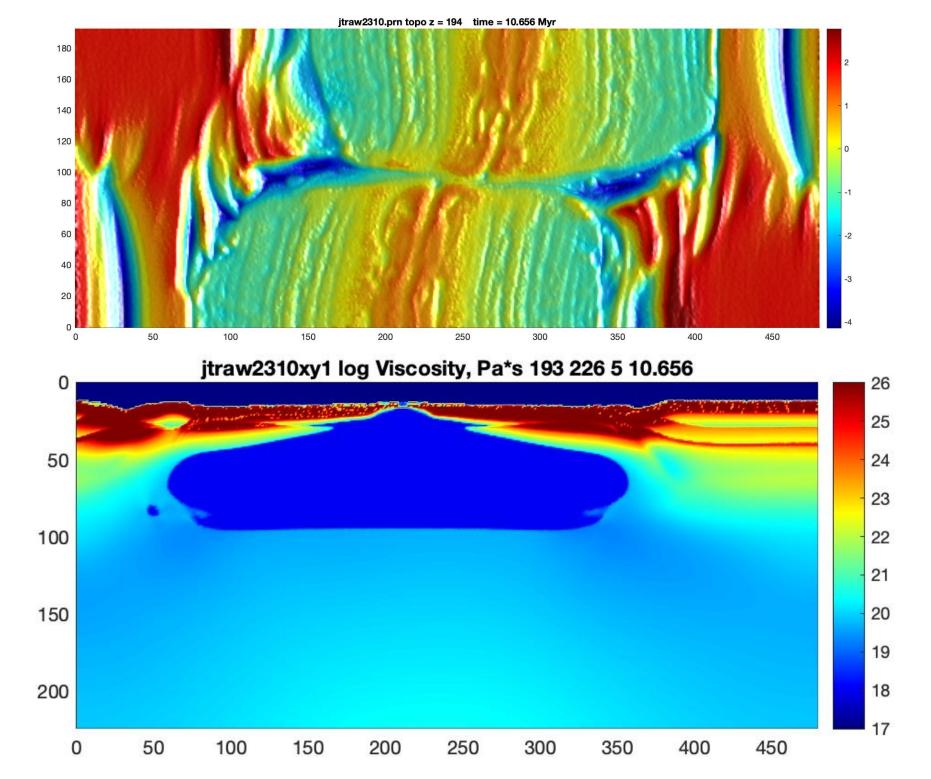


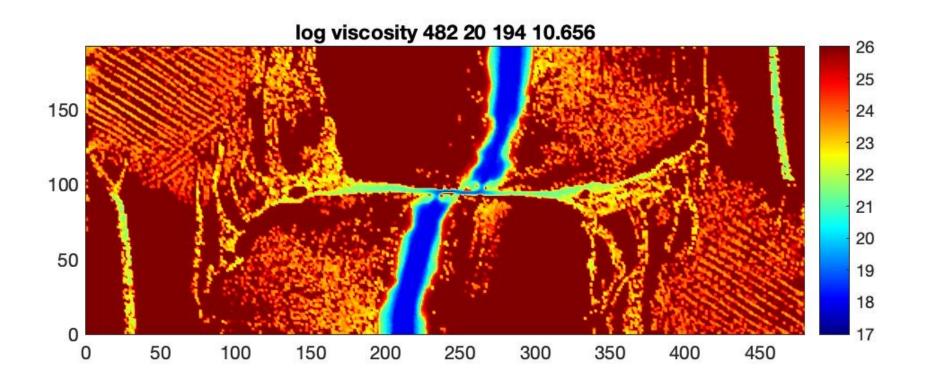


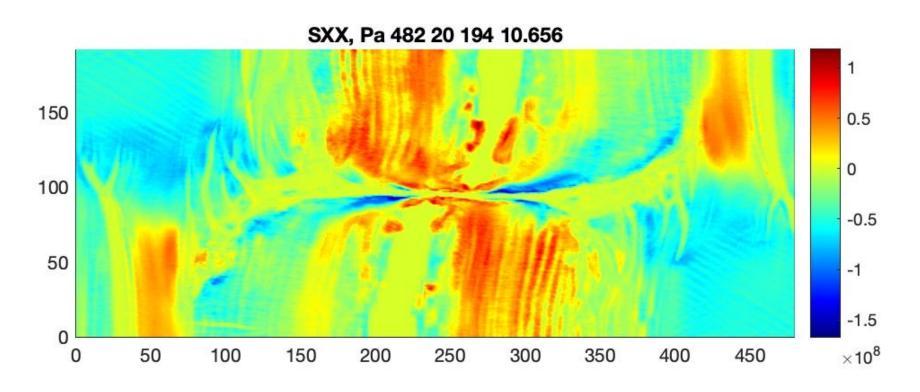




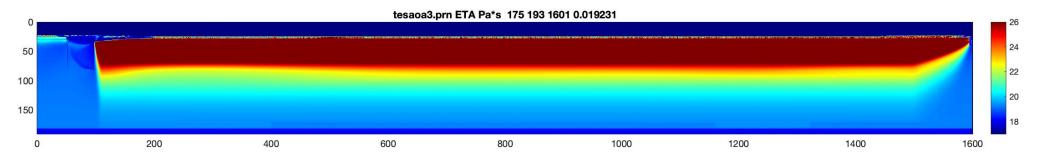


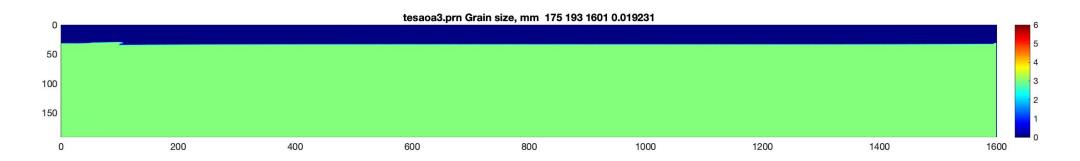






Subduction with grain damage

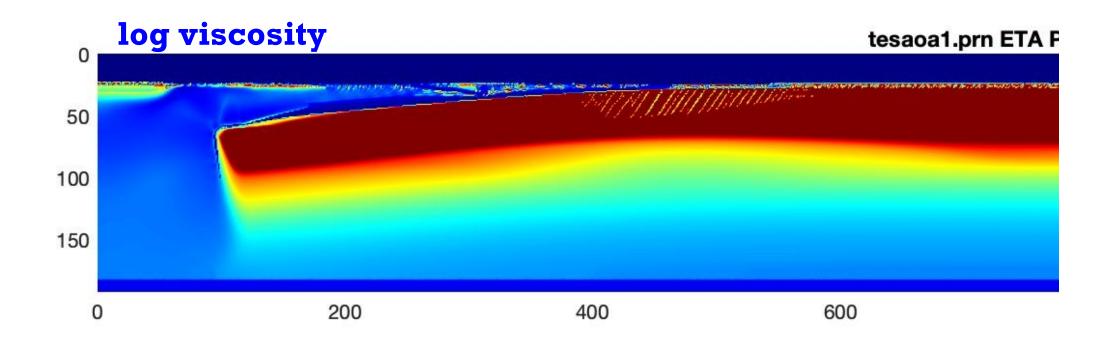


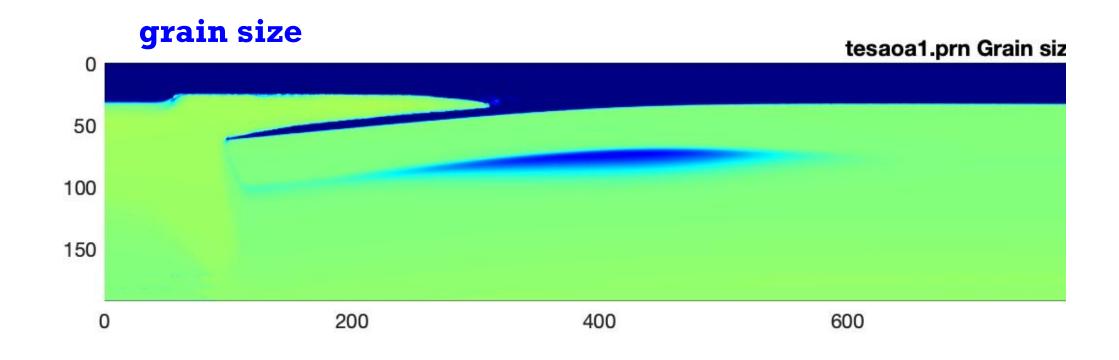


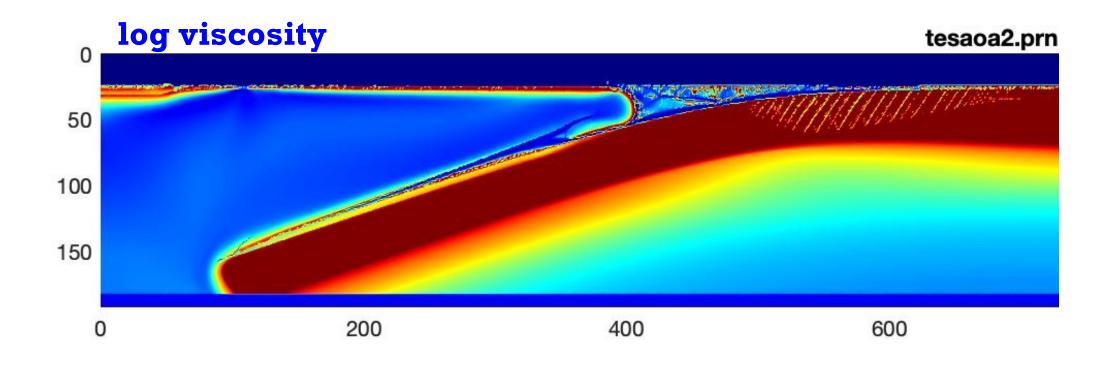
Model size: 1600x192x750 km

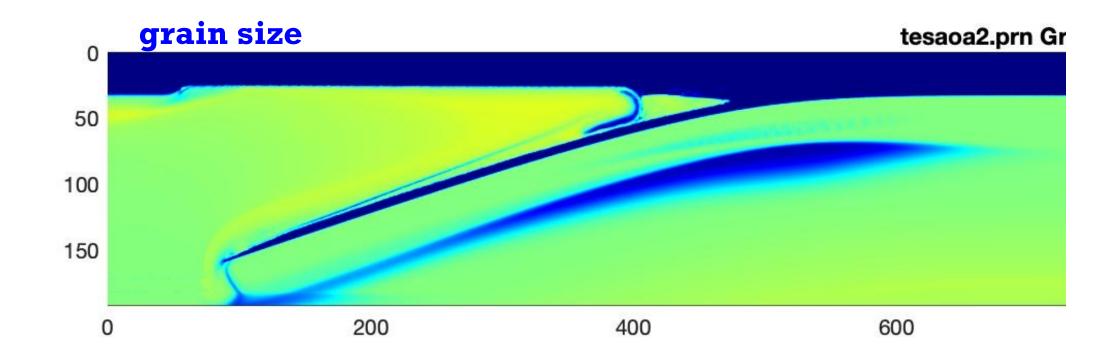
Model resolution: 1601x193x145 nodes

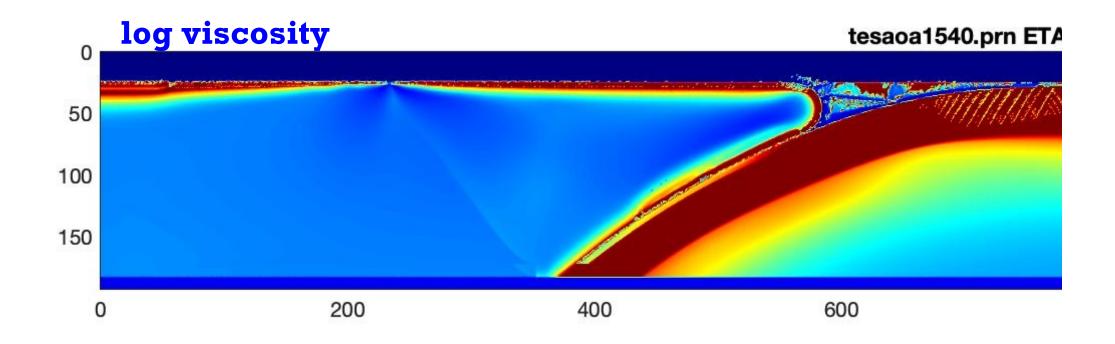
Run time: 2 months on 64 CPUs

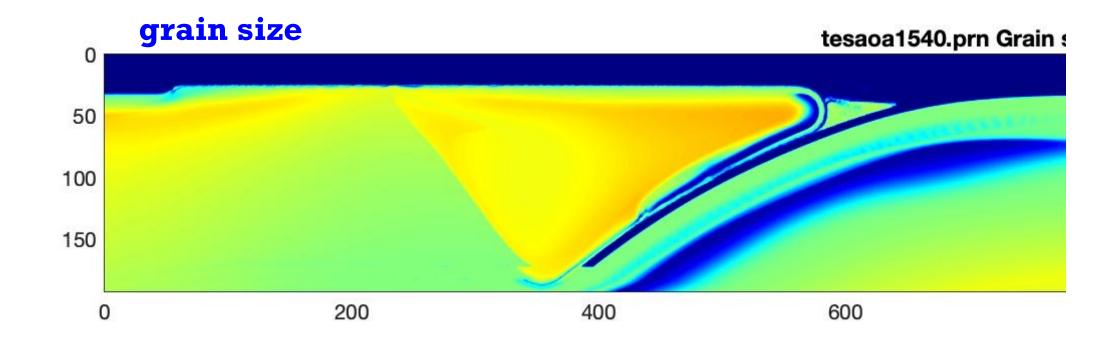


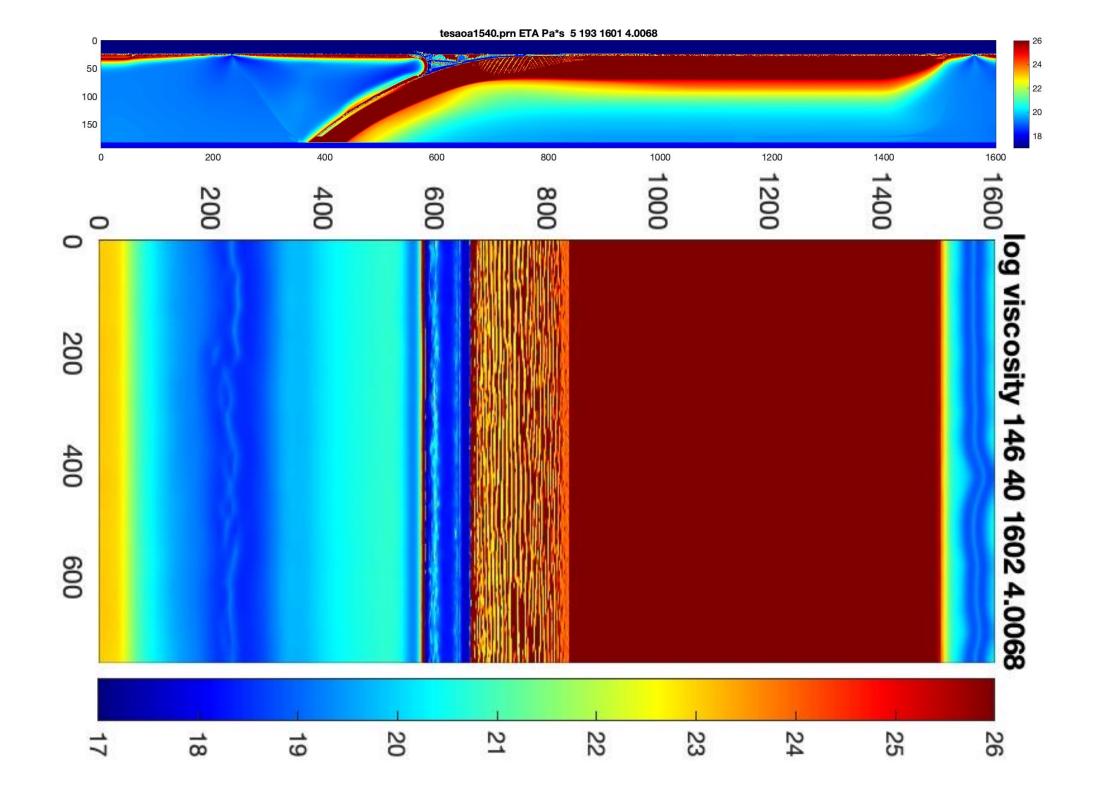












Conclusions

New I3ELVIS is ready for use

Parallelization is still OpenMP and requires fat nodes

I3ELVIS Outlook

Planetary - Adding self-gravitation should be straigth forward

STM - Adding inertia and Rate- and State Friction should be straigth forward

HTM - Adding poroelasticity and two-phase flow should be straigth forward

Landscape - Adding coupling to surface processes should be straigth forward