Fluid-rock interactions at high-pressure metamorphic conditions:

An analysis of atoll-garnets preserved in eclogitic breccias from the Zermatt-Saas zone, Italian Alps.

This presentation participates in OSPP

Outstanding Student & PhD candidate Presentation contest

Kilian Lecacheur, O.Fabbri, S.Hertgen, H.Leclere

MOTIVATION

Fluide circulation in subduction permit modification of the rheology in eclogite facies with a transfer from ductile deformation to brittle deformation

Brittle deformation is attested by eclogitic breccia

MOTIVATION

Evidence of fluide circulation in the Alps: using garnet has a monitor of metamorphic evolution in HP condition

Locatelli et al. 2019, after Hacker et al. 2003

Polymetamorphic history (Variscan+alpine) Xgrossular(Ca), Giuntolli et.al.,2018

EGU General 2022

CONTEXT

Manzotti et al., 2014

Studying the alpine ophilites that have recorded subduction and eclogite metamorphique condition

Searching evidence of brittle deformation and fluid interaction

Evidence of eclogite fracturation, sealed by new omp generation

Garnet 1 : Core = Alm_{51} Sps₂₅ Grs₂₂ Prp₂ Rim : Alm_{62} Sps₁₀ Grs₂₆ Prp₂

Garnet 2 : Oscillatory zoning when growing with other phase (titanite + omp)

Alm₅₀ Grs₄₅ SPs₀ Prp₅

Lobates structures + peninsulas + fractures

GRT2 is always fractured and sealed by late omp2

Chemical evolution of Omphacite

The increasing in Ca is alo visible with the 2 different omp

SYNTHESIS

Stade 1:
Formation of
GRT1 richer in
Fe/Mn

Stade 2 : Fracturation of GRT1

Stade 2 : Fracturation of GRT1

Stade 3:
Dissolution/re
sorption of
GRT1
Growing of
GRT2 richer
in Ca

Stade 4:
Late
Fracturation of GRT2

CONCLUSION

- Resorption of GRT1: lobate structures and peninsulas
- Fractures of GRT1 sealed by GRT2
- Growing of 2nd
 generation of Ca-rich
 minerals

Indication of fluid-minerals interactions and Ca importation

THANK YOU FOR YOUR ATTENTION

This presentation participates in OSPP

Outstanding Student & PhD candidate Presentation contest

