Changes in pattern formation and behavior in rotating Rayleigh-Bénard convection due to inhomogeneous thermal insulation

Janet Peifer

Onno Bokhove and Steve Tobias

University of Leeds

Department of Applied Mathematics & Leeds Institute for Fluid Dynamics

24 May, 2022

Overview

- Introduction & Motivation
- ② Governing Equations
- Boundary Conditions
- 4 Positive/Negative BC on sidewall
 - Conducting Solution
 - Results
- Positive/Zero BC on sidewall
 - Heat Transport
 - Results
- 6 Conclusions and Future Work
- References

Introduction & Motivation

- Rayleigh-Bénard convection in molten planetary cores, affected by thermal conditions at the mantel (Mound & Davies, 2017)
- Explore the importance of thermal boundaries on fluid heat transport and temporal and spatial behaviour
- Can spatially inhomogeneous insulation cause time-independent behaviours and pin convection rolls in rapidly rotating system?

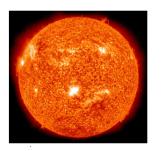


Figure: Image of the sun from National Geographic, a numerical simulation and a convection experiment at UCLA SpinLab.

Governing Equations

Boussinesq approximation applied to Navier Stokes equations:

$$\frac{D\boldsymbol{u}}{Dt} + 2\boldsymbol{\Omega} \times \boldsymbol{u} = -\frac{1}{\rho_0} \boldsymbol{\nabla} \boldsymbol{p} + \alpha T \boldsymbol{g} + \nu \nabla^2 \boldsymbol{u}, \tag{1}$$

$$\nabla \cdot \boldsymbol{u} = 0, \tag{2}$$

$$\frac{DT}{Dt} = \kappa \nabla^2 T. \tag{3}$$

Obtain non-dimensional equations by apply scalings such that,

$$t = \hat{t} \frac{d^2}{\kappa}$$
 $\mathbf{x} = \hat{\mathbf{x}} d$ $\mathbf{u} = \hat{\mathbf{u}} \frac{\kappa}{d}$ $p = \hat{p} \frac{\kappa^2}{d^2}$ $T = \hat{T} \Delta T$, (4)

where d is the height of the system.

Governing Equations

Eqs (1)-(3) now become non-dimensional:

$$\frac{D\boldsymbol{u}}{Dt} = -\nabla p + Pr\nabla^2 \boldsymbol{u} - RaPrT\tilde{\boldsymbol{z}} - \frac{Pr}{Ek}\tilde{\boldsymbol{z}} \times \boldsymbol{u}, \tag{5}$$

$$\nabla \cdot \boldsymbol{u} = 0, \tag{6}$$

$$\frac{DT}{Dt} = \nabla^2 T. (7)$$

With non-dimensional parameters Prandtl number, Rayleigh number, and Ekman number:

$$Pr = \frac{\nu}{\kappa}$$
 $Ra = \frac{\alpha \Delta T d^3 g}{\nu \kappa}$ $Ek = \frac{\nu}{2\Omega d^2}$ (8)

Boundary Conditions

Top and Bottom $(z = z_1, z_0)$:

- No-slip velocity: $\mathbf{u} = 0$
- Fixed temperature: $T(z_0, z_1) = 1, 0$

Sidewalls (r = R):

- No-slip velocity: $\mathbf{u} = 0$
- One of the following forms inhomogeneous heat flux:
 - Positve/Negative:

$$\nabla T \cdot \mathbf{n} = \frac{\partial T}{\partial r} = \sum_{n=1}^{\infty} A_n \sin(f_n z) \sin(m_\theta \theta)$$
 (9)

Positive/Zero:

$$\frac{\partial T}{\partial r} = A_n \sin(\pi (z + 0.5))(1 + \sin(m_\theta \theta)) \tag{10}$$

 A_n , f_n , and m_θ are constants

Numerical Simulations

- Nek5000: Spectral Element Method solver
- Cylindrical domain with aspect ratio $\Gamma = r/d = 0.7$
- Parameter range:

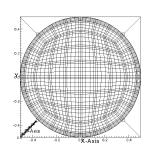
$$Pr = 0.7$$

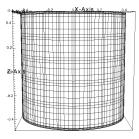
 $Ra < 10^8$

$$Ra \le 10^{\circ}$$

 $Ek > 10^{-5}$

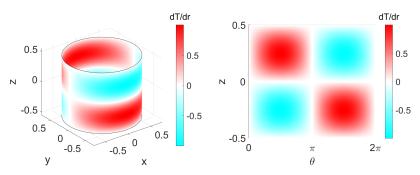
• Initial condition: u = 0 and T = -z + 0.5 with perturbation





Positive/Negative BC on sidewall

$$\nabla T \cdot \mathbf{n} = \frac{\partial T}{\partial r} = \sum_{n=1}^{\infty} A_n \sin(f_n z) \sin(m_\theta \theta)$$



Heat flux at r=R when $A_n=1$, $f_n=1$, and $m_\theta=1$

 $f_n = 1$ for all cases to simplify vertical deviation

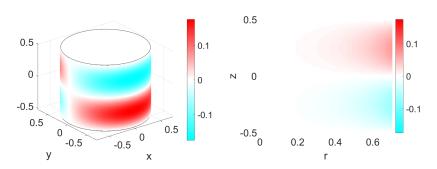
Conducting Solution with P/N BC on sidewall

Solving Eqs (5-7) with Eq (9) for a state where $\mathbf{u} = 0$ and dT/dt = 0,

$$T(z,\theta,r) = \overline{T}(z) + T'(z,\theta,r)$$

$$\overline{T} = \frac{z}{z_0-z_1} - \frac{z_1}{z_0-z_1},$$

$$\overline{T} = \frac{z}{z_0 - z_1} - \frac{z_1}{z_0 - z_1}, \qquad T' = \sum_{n=1}^{\infty} \frac{A_n}{\frac{\mathrm{d}I_m(Rf_n)}{\mathrm{d}r}} \sin(f_n z) \sin(m_\theta \theta) I_m(f_n r)$$



T' when $A_n=1$, $f_n=1$, and $m_\theta=1$ Note I_m is a modified Bessel's function

Numerical Validation of P/N BC on sidewall

Use conducting solution (T_{cs}) and numerical simulation (T_{ns}) where $Ra < Ra_c$, so the system is conducting to validate numerical set up. Quantified with $T^{\infty} = |max(T_{cs} - T_{ns})|$

Ek	Ra	m_{θ}	A_n	T^{∞}
∞	1	1	0.1	4×10^{-5}
			0.5	2×10^{-4}
		2	0.1	4×10^{-5}
10^{-3}	1	1	0.1	4×10^{-5}
10^{-4}	1	1	0.5	7×10^{-4}
			1	2×10^{-3}
		3	2	2×10^{-3}
10^{-5}	1	1	0.5	2×10^{-4}

 T^{∞} increases as A_n increases due to the dI_m/dr term in the conducting solution, which is calculated numerically. So as dr decreases, T^{∞} also decreases.

All results shown are calculated with $dr = 10^{-3}$.

Results of Positive/Negative BC on Sidewalls

$$\nabla T \cdot \mathbf{n} = \frac{\partial T}{\partial r} = \sum_{n=1}^{\infty} A_n \sin(f_n z) \sin(m_\theta \theta)$$

Azimuthal mode, m_{θ} is chosen in relation to the dominant mode, m_{UI} identified in the uniformly insulated (UI) system of the same Ek and Ra. m_{θ} generally is either:

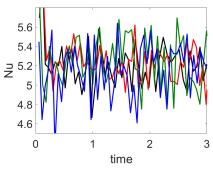
- ullet = 1, to apply a larger wavelength at the sidewall than in the UI system, more similar to planetary cores (Mound & Davies, 2017) or
- = m_{UI} > 1, to investigate ability of lateral thermal boundary conditions to pin convection rolls (i.e.stop them from rotating about the domain)

Amplitude, A_n , is increased from 0.5 until effects are observed Heat transport is measured by Nusselt number, $Nu = \frac{\Delta T}{(dT/dr)|_{z=z_1}d}$.

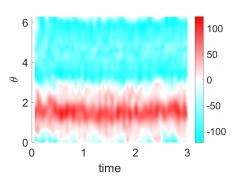
P/N BC on sidewall: Non-Rotating Example

$$Ek = \infty$$
, $Ra = 3 \times 10^5$

UI system is chaotic with $m_{UI} = 1$. Apply $m_{\theta} = 1$ with $A_n = [0.5, 1, 2]$.



UI; $A_n = 0.5$; $A_n = 1$; $A_n = 2$



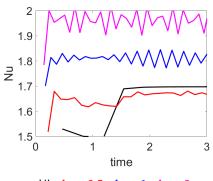
Hövmoller diagram of vertical velocity, w, for $A_n = 2$ taken at z = 0.3 and r = 0.65

Temporal behaviour is chaotic and dominant mode is m=1 for all A_n No significant change in behaviour due to heterogeneous sidewall insulation

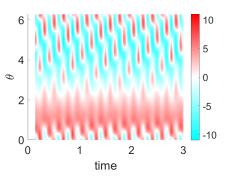
P/N BC on sidewall: Weakly Rotating Example

$$Ek = 10^{-3}$$
, $Ra = 4.8 \times 10^4$

UI is time-independent with $m_{UI}=3$. Apply $m_{\theta}=1$ with $A_n=[0.5,2,3]$



UI; $A_n = 0.5$; $A_n = 1$; $A_n = 3$



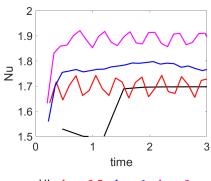
Hövmoller diagram of vertical velocity, w, for $A_n = 3$ taken at z = 0.3 and r = 0.68

 $m_{\theta}=1$ cause time-dependant behaviour and super-positions with $m_{UI}=3$ mode, showing effects most strongly where applied dT/dr>0.

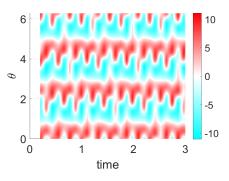
P/N BC on sidewall: Weakly Rotating Example

$$Ek = 10^{-3}$$
, $Ra = 4.8 \times 10^4$

UI is time-independent with $m_{UI}=3$. Apply $m_{\theta}=3$ with $A_n=[0.5,2,3]$



UI; $A_n = 0.5$; $A_n = 1$; $A_n = 3$



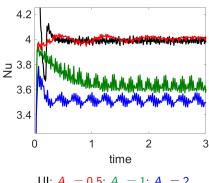
Hövmoller diagram of vertical velocity, w, for $A_n = 3$ taken at z = 0.3 and r = 0.68

 $m_{\theta}=m_{UI}=3$ causes oscillatory temporal behaviour. Convection rolls are pinned, but oscillate within range $\theta=2\pi/m_{\theta}$.

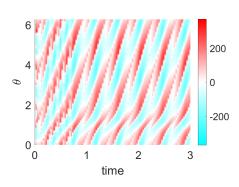
P/N BC on sidewall: Rapidly Rotating Example

$$Ek = 10^{-5}$$
, $Ra = 1.44 \times 10^{7}$

UI is chaotic with small σ_{Nu} and $m_{UI}=3$. Apply $m_{\theta}=1$ & $A_n=[0.5,1,2]$



UI: $A_n = 0.5$: $A_n = 1$: $A_n = 2$



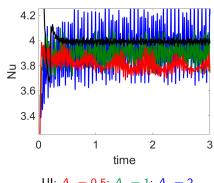
Hövmoller diagram of vertical velocity, w, for $A_n = 1$ taken at z = 0.3 and r = 0.68

As A_n increases, Nu decreases, and quasi-oscillatory temporal behaviour begins. Fluid rotates slower than UI, and slows further where dT/dr > 0

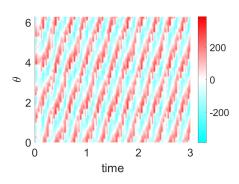
P/N BC on sidewall: Rapidly Rotating Example

$$Ek = 10^{-5}, Ra = 1.44 \times 10^{7}$$

UI is chaotic with small σ_{Nu} and $m_{UI}=3$. Apply $m_{\theta}=3$ & $A_n=[0.5,1,2]$



UI;
$$A_n = 0.5$$
; $A_n = 1$; $A_n = 2$



Hövmoller diagram of vertical velocity, w, for $A_n = 2$ taken at z = 0.3 and r = 0.68

As A_n increases, $\sigma_{N\mu}$ increases. For all A_n , fluid rotates slower than UI, upward and downward motion oscillate in strength 3 times in θ

P/N BC on sidewall: Discussion

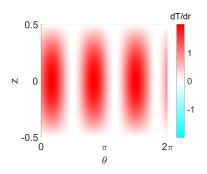
• Vary heat flux in both z and θ to investigate planetary-core-like system:

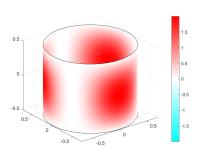
$$\nabla T \cdot \mathbf{n} = \frac{\partial T}{\partial r} = \sum_{n=1}^{\infty} A_n \sin(f_n z) \sin(m_\theta \theta)$$

- ullet Choose either $m_{ heta}=1$, to approximate planetary cores
 - Fluid rotates slower where dT/dr>0 or $m_{\theta}=m_{UI}$, the dominant mode of the uniformly insulated case (UI) to pin convection rolls
 - pinned rolls within $\theta=2\pi/m_{\theta}$ only when weakly rotating
- Generally, non-rotating systems are not affected by the inhomogeneous sidewall insulation.
- In rotating systems, the sidewall heat flux variation is observed to cause the system to become more time-dependant and make the fluid rotate about the domain, regardless of the temporal and spatial behaviour of the uniformly insulated system

2. Positive/Zero BC on sidewall

$$\frac{\partial T}{\partial r} = A_n \sin(\pi (z + 0.5))(1 + \sin(m_\theta \theta))$$





Heat flux at r = R when $A_n = 1$, and $m_\theta = 3$

P/Z BC on sidewall: Heat Transport

Previous Nu definition not applicable. Redefine from Kunnen et al, 2008, $Nu=1+< wT>_V$, a volume average of the domain.

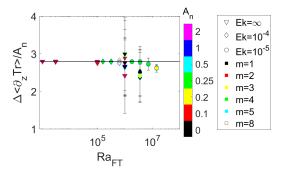
Following Hepworth, 2014, heat flux accounting is employed to validate numerical set-up. By integrating the heat equation, Eq(7), over the volume of the domain and applying the fixed temperature longitudinal and heterogeneous lateral (Eq(12)), we find that,

$$\int_{0}^{R} \int_{0}^{2\pi} \frac{\partial T}{\partial z} r \mathrm{d}\theta \mathrm{d}r|_{z=-Z} = \int_{0}^{R} \int_{0}^{2\pi} \frac{\partial T}{\partial z} r \mathrm{d}\theta \mathrm{d}r|_{z=Z} + 4RA_{n} \qquad (12)$$

Thus the difference in heat flux from the bottom to top of the system should be $4RA_n = 2.8A_n$.

P/Z BC on sidewall: Numerical Validation

We simulated a range of $Ek-Ra-m_{\theta}-A_n$ systems and measured the difference in heat flux between the top and bottom, $\Delta < \partial_z Tr >$, and divided by the A_n of each respective case.

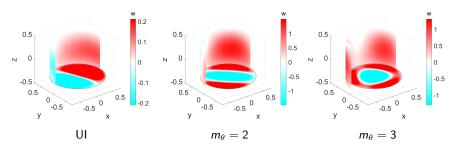


Ek, A_n , and m value are represented by the marker shape, edge colour, and fill colour, respectively. the solid line represents the expected value, 2.8. Error bars show the standard deviation.

Increase in *Ra* and decrease *Ek* case variation away from 2.8, likely due to increased time-dependence causing less certainty in heat flux measurements.

P/Z BC on sidewall: Non-rotating Example

 $Ek = \infty$, $Ra = 3 \times 10^3$ UI is time-dependant with $m_{UI} = 1$. However, Positive/Negative BC results found no effect due to $m_{\theta} = m_{UI} = 1$. We apply $m_{\theta} = [2,3]$ with $A_n = 1$.



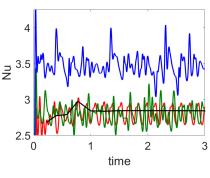
Vertical velocity, w, at r = 0.69, and z = -0.3

The dominant mode of the system becomes m_{θ} . The fluid motion in the bulk of the domain is affected, which was not observed in the P/N case.

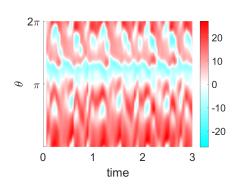
P/Z BC on sidewall: Weakly Rotating Example

$$Ek = 10^{-3}$$
, $Ra = 9.6 \times 10^4$

UI is time-independent with $m_{UI}=2$. We apply $m_{\theta}=1$ & $A_n=[0.5,1,2]$



UI;
$$A_n = 0.5$$
; $A_n = 1$; $A_n = 2$

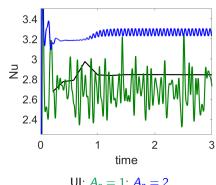


Hövmoller diagram of vertical velocity, w, for $A_n = 2$ taken at z = 0.3 and r = 0.68

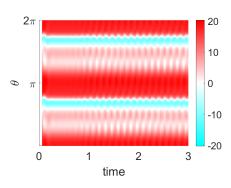
All systems become chaotic, but \overline{Nu} only increases when $A_n = 2$. One convection roll dominant, upward motion favoured where $dT/dr \neq 0$.

$$Ek = 10^{-3}$$
, $Ra = 9.6 \times 10^4$

UI is time-independent with $m_{UI} = 2$. We apply $m_{\theta} = 2 \& A_n = [1, 2]$



UI: $A_n = 1$: $A_n = 2$



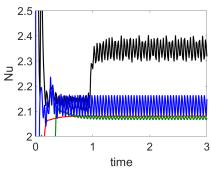
Hövmoller diagram of vertical velocity, w, for $A_n = 2$ taken at z = 0.3 and r = 0.68

Transition from chaos to oscillation as A_n increases, \overline{Nu} also increases. Upward motion strongly preferred where $dT/dr \neq 0$. Rolls pinned.

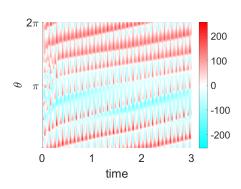
P/Z BC on sidewall: Rapidly Rotating Example

$$Ek = 10^{-5}$$
, $Ra = 7.2 \times 10^{6}$

UI is oscillatory with $m_{UI}=4$. We apply $m_{\theta}=1$ & $A_n=[0.5,1,2]$.



UI; $A_n = 0.5$; $A_n = 1$; $A_n = 2$



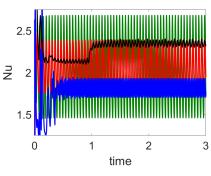
Hövmoller diagram of vertical velocity, w, for $A_n = 2$ taken at z = 0.3 and r = 0.68

 \overline{Nu} decreased with sidewall condition, amplitude of oscillation increases as A_n increases, strongest deformation of m_{UI} caused where $dT/dr \neq 0$

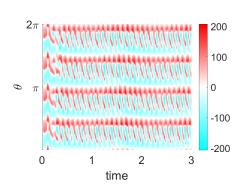
P/Z BC on sidewall: Rapidly Rotating Example

$$Ek = 10^{-5}$$
, $Ra = 7.2 \times 10^{6}$

UI is oscillatory with $m_{UI}=4$. We apply $m_{\theta}=4$ & $A_n=[0.5,1,2]$.



UI; $A_n = 0.5$; $A_n = 1$; $A_n = 2$



Hövmoller diagram of vertical velocity, w, for $A_n = 2$ taken at z = 0.3 and r = 0.68

 \overline{Nu} decreased as A_n increases. Convection rolls pinned where dT/dr strongest, with oscillations between $\theta = 2\pi/m_{\theta}$.

P/Z BC on sidewall: Discussion

• Define a thermal boundary condition which is dT/dr > 0 with a sinusoidal variation in z and θ :

$$\frac{\partial T}{\partial r} = A_n \sin(\pi (z + 0.5))(1 + \sin(m_\theta \theta))$$

- A Nu definition based on Kunnen, et al 2008 is defined
- Heat flux accounting following Hepworth, 2014 is followed to show that the difference in heat flux between the bottom and top of the system should be $2.8A_n$. Used to validate the numerical setup.
- Non-rotating: Convection rolls arrange into m_{θ} in the bulk of the fluid such that the centre of the system tends toward upward velocity
- Weakly rotating: $m_{\theta} = 1$ causes temporal chaos, $m\theta = m_{UI}$ the mode is pinned, for sufficient A_n .
- Rapidly rotating: $m_{\theta} = 1$ shows strongest deviation from m_{UI} where $\max(dT/dr) = 1$; $m_{\theta} = m_{UI}$ convection pinned where dT/dr is strongest with oscillation between; increasing A_n decreases \overline{Nu} .

Conclusions and Future Work

- Positive/Negative Thermal BC
 - Non-rotating systems not affected; Rotating systems become more time-dependant
 - $m_{ heta}=1$ causes slow of fluid rotation where dT/dr>0
 - $m_{ heta}=m_{UI}$ pins rolls but fluid oscillates within $heta=2\pi/m_{ heta}$
- Positive/Zero Thermal BC:
 - ullet Non-rotating systems form $m_{ heta}$ number of rolls in the bulk
 - Rapidly rotating systems decrease in \overline{Nu} as A_n increases
 - Rotating, for large A_n , pin rolls which oscillate between $\theta = 2\pi/m_{\theta}$
- Increasing the ratio between A_n and $\max(\mathbf{u})$ increases the effect on the system $(A_n \approx 2 \text{ in Earth's core (Mound & Davies, 2017)})$
- Positive heat flux changes fluid behaviour more than negative heat flux variations - applicable to studies of planetary core dynamics, which have varying, positive, heat flux on boundaries
- In rotating systems, the application of $m_{\theta}=m_{UI}$ pins fluid everywhere- interesting potential experiment
- Future work: conduct experiments to verify results

References and Acknowledgements

- NEK5000 Version 19.0. (2019). Argonne National Laboratory, Illinois.
- Mound, J., and Davies, C. (2017). J. Fluid Mech.
- Hepworth, B. (2014). PhD thesis. University of Leeds.

This work was undertaken on ARC3, part of the High Performance Computing facilities at the University of Leeds, UK.