

The Near Real time analysis of Hunga Tonga-Hunga Ha'apai eruption in the ionosphere by GNSS

by Maletckii B. and Astafyeva E.

EGU 2022 General Assembly. Session ITS3.6/SM1.2

Late-breaking session: The 15 January 2022 Hunga Tonga Volcanic Eruption – Observation, Understanding and Impact of large explosive volcanic eruptions

The **IONOSPHERE** is the ionized part of Earth's upper atmosphere, from ~90 to ~1000 km altitude. The ionosphere is formed by the solar radiation.

IONOSPHERE

(Ionospheric Disturbances)

TEC by GNSS

Tonga Volcano and GNSS receivers

24 GNSS receivers == 500+ Ionospheric Observation Points

Methodology Explanation.

Instantaneous Velocities Fields

NRT TTD "look" on the response

Hunga Tonga eruption case by 1-sec data.
Analysis by NRT TTD

Maletckii & Astafyeva, 2022 - <u>Submitted to GRL</u>(available on the ESSOAr)

8

THANK YOU FOR ATTENTION!