

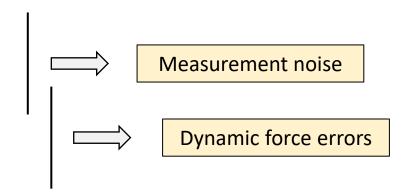
Treatment of Noise in GRACE Gravity Field Recovery

A Comparison between Empirical Parameterization and Stochastic Modelling

Yufeng Nie¹, Yunzhong Shen¹, Roland Pail², and Qiujie Chen¹

- 1. College of Surveying and Geo-Informatics, Tongji University, Shanghai, China
- 2. Institute of Astronomical and Physical Geodesy, Technical University of Munich, Munich, Germany

26.05.2022, Vienna, Austria & Online


Content

- Noise-reduction Methods Revisited
- ► Numerical Simulations
- Results and Analysis
- Conclusions

Noise-reduction Methods Revisited

Dominant noise sources in the GRACE solution

- K-band range-rate measurement noise
- Kinematic orbit noise
- Accelerometer measurement noise
- Ocean tide model errors
- Imperfection in AOD product

Common methods for noise reduction in gravity recovery

Empirical parameterization

KBR method: range-rate kinematic empirical parameters

ACC method: high-frequency (constrained) dynamic empirical accelerations

COV method: fully-populated covariance matrix

FILT method: time-series model-based filtering

Stochastic modelling

Noise-reduction Methods Revisited

Theoretical connections among four methods

KBR method

$$\delta \dot{\rho} = A + Bt + (E + Ft)\cos n \, t + (G + Ht)\sin n \, t$$

LOS projection

$$\delta \dot{\rho} = \left(\delta \dot{S}_2 - \delta \dot{S}_1\right) \cos \theta / 2 + \left(\delta \dot{R}_2 + \delta \dot{R}_1\right) \sin \theta / 2$$

Linear perturbation

perturbed acc.

$$\mathbf{p} = a_R \mathbf{i}_R + a_S \mathbf{i}_S + a_N \mathbf{i}_N$$

ACC method

$$\mathbf{y} = \mathbf{A}\mathbf{x} + \mathbf{B}\mathbf{p} + \mathbf{e}$$

$$\mathbf{0} = \mathbf{p} + \mathbf{e}_p$$

$$E(\mathbf{e}_p) = \mathbf{0} \quad D(\mathbf{e}_p) = \sigma_p^2 \mathbf{I}$$

$$\#p \ll \#s$$

FILT method

$$\mathbf{v}_i = \phi_1 \mathbf{v}_{i-1} + \phi_2 \mathbf{v}_{i-2} + \dots + \phi_p \mathbf{v}_{i-p} + \boldsymbol{\epsilon}_i$$
$$\mathbf{F} \mathbf{y} = \mathbf{F} \mathbf{A} \mathbf{x} + \mathbf{F} \mathbf{e}$$

$$\widehat{P}(f) = \frac{\sigma_{\epsilon}^2 \Delta t}{1 - \sum_{k=1}^{p} \phi_k \exp(-j2\pi f k \Delta t)}$$

AR psd estimate

Spectral analysis

$$\hat{P}(f) = \Delta t \sum_{\tau=-(N-1)}^{N-1} \hat{c}_{\tau} \exp(-j2\pi f \tau \Delta t)$$

periodogram

Least-squares collocation

$$y = Ax + Bs + e$$

$$E(\mathbf{e}) = \mathbf{0} \quad D(\mathbf{e}) = \sigma_e^2 \mathbf{Q}_e$$

$$E(\mathbf{s}) = \mathbf{0} \quad D(\mathbf{s}) = \sigma_s^2 \mathbf{Q}_s$$

$$\mathbf{e}^* = \mathbf{B}\mathbf{s} + \mathbf{e}$$

COV method

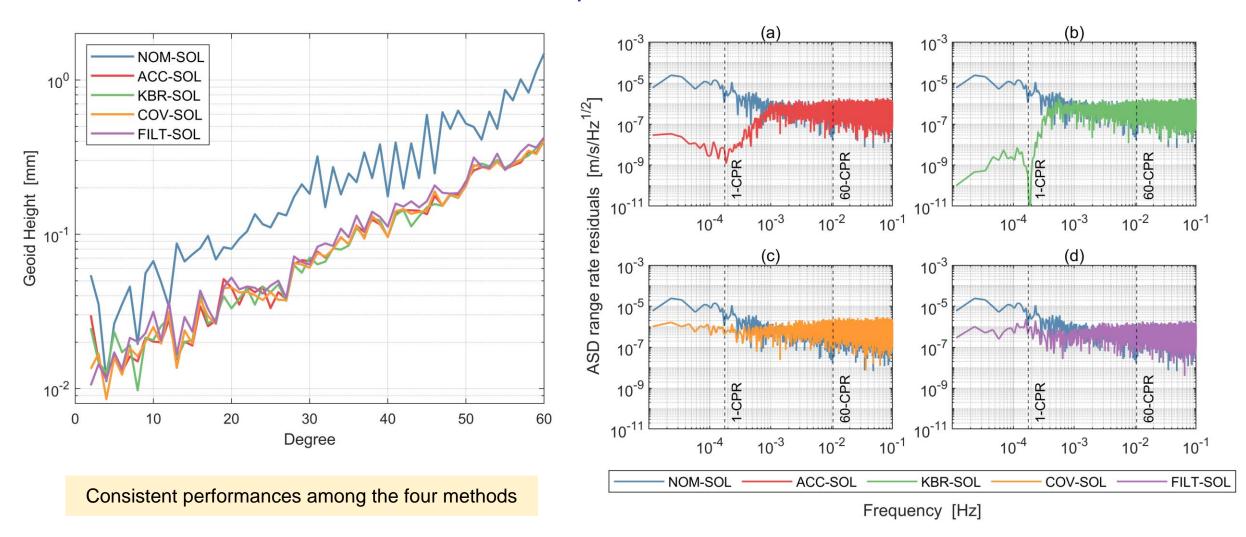
$$y = Ax + e^*$$

$$E(\mathbf{e}^*) = \mathbf{0}$$

$$D(\mathbf{e}^*) = \sigma_s^2 \mathbf{B} \mathbf{Q}_s \mathbf{B}^T + \sigma_e^2 \mathbf{Q}_e$$

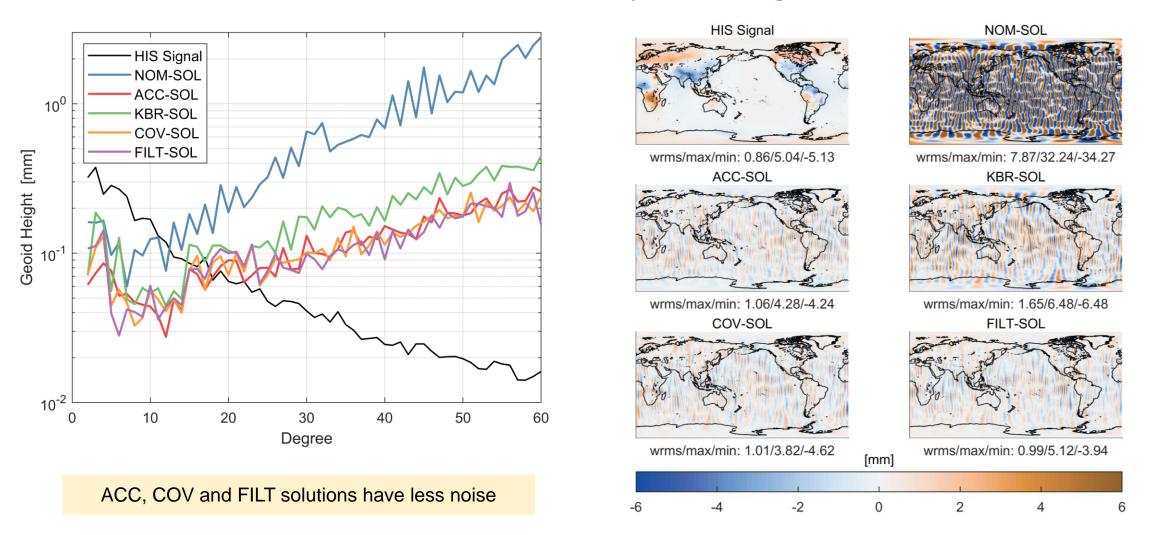
Numerical Simulations

Background force models

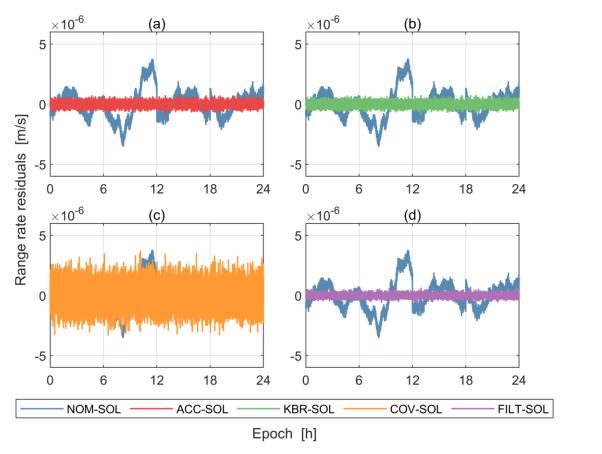

Model	True	Reference Case-1	Reference Case-2
Static field	GOCO05s	GOCO05s	EIGEN-6C4
Ocean tide	EOT11a	EOT11a	GOT4.7
Non-tidal signal	ESM AOHIS	ESM AOHIS	ESM DEAL & AOerr

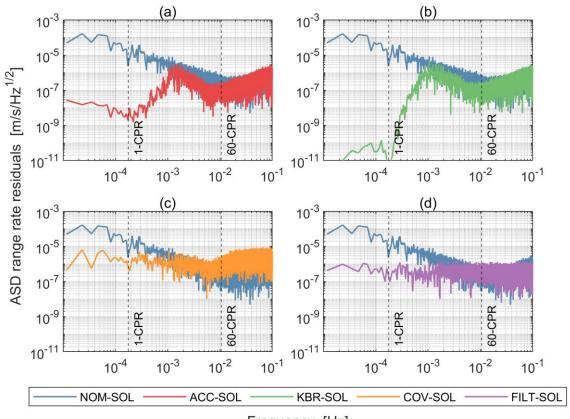
Noise models

Observation	Case-1	Case-2
Orbit positions	2 cm white noise	2 cm white noise
KBR range-rates	0.2 µm/s white noise	$1.8 imes 2\pi f \ \mu ext{m/s}/\sqrt{ ext{Hz}}$
Accelerometer	along & radial: 1×10 ⁻¹⁰ m/s ² white noise cross: 1×10 ⁻⁹ m/s ² white noise	along & radial: $(1+0.005/f)^{1/2} \times 10^{-10} \text{ m/s}^2/\sqrt{\text{Hz}}$ cross: $(1+0.1/f)^{1/2} \times 10^{-9} \text{ m/s}^2/\sqrt{\text{Hz}}$


Results and Analysis

► Simulation Case 1: white sensor noise only


Results and Analysis


► Simulation Case 2: colored sensor noise & temporal aliasing

Results and Analysis

► Simulation Case 2: colored sensor noise & temporal aliasing

Frequency [Hz]

Low-frequency patterns are mitigated

Colored noise behavior beyond 10⁻³ Hz is not properly handled in ACC and KBR-SOL

Conclusions

- The ACC and COV can be regarded as special cases of LSC
- ► KBR and ACC are linked by linear perturbation theory, FILT and COV represent parametric and non-parametric spectral estimation techniques
- Four methods are of consistent performances when only white sensor noise is considered
- ACC, COV and FILT perform better when both colored sensor noise and temporal aliasing are considered
- Empirical parameterization (ACC and KBR) works as high-pass filter
- Stochastic modelling (COV and FILT) can deal with colored noise for the whole frequency band

Thank you for your attention!

yufeng.nie@tongji.edu.cn

More details: Nie Y., Shen Y., Pail R., Chen Q. and Xiao Y. (2022) Revisiting Force Model Error Modeling in GRACE Gravity Field Recovery. Surv Geophys. https://doi.org/10.1007/s10712-022-09701-8

