250 years of daily weather

a reconstruction of temperature and precipitation in Switzerland since the late 18th century

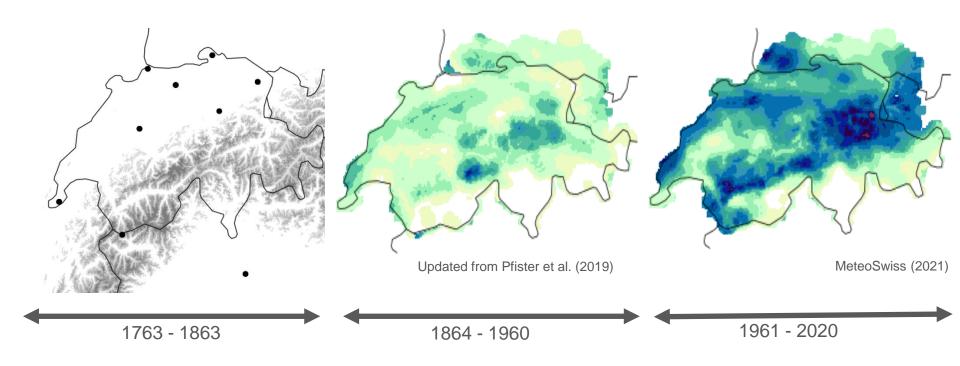
Noemi Imfeld^{1,2}, Lucas Pfister^{1,2}, Yuri Brugnara^{1,2}, and Stefan Brönnimann^{1,2}

¹Oeschger Center for Climate Change Research, University of Bern

²Institute of Geography, University of Bern

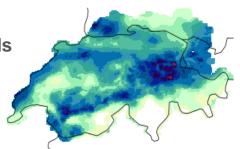
JNIVERSITÄT BERN

CLIMATE CHANGE RESEARCH



250 years of daily weather

 u^{b}


UNIVERSITÄT BERN

a reconstruction of temperature and precipitation in Switzerland since the late 18th century

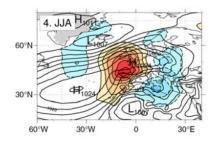
1. Daily temperature and precipitation fields

Covering the reference period 1961 - 2020 1km x 1km, Meteoswiss

 u^{b}

UNIVERSITÄT BERN


OESCHGER CENTRE
CLIMATE CHANGE RESEARCH


1. Daily temperature and precipitation fields

Covering the reference period 1961 - 2020 1km x 1km, Meteoswiss

2. Daily weather types

1763 – 2009, Schwander et al. 2017

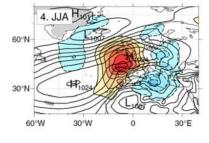
UNIVERSITÄT
BERN

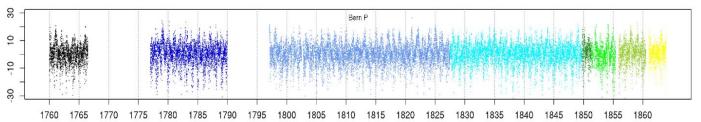
OESCHGER CENTRE
CLIMATE CHANGE RESEARCH

1. Daily temperature and precipitation fields

Covering the reference period 1961 - 2020 1km x 1km, Meteoswiss

ds


2. Daily weather types

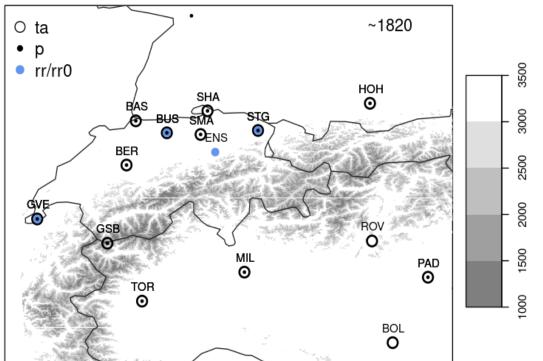

1763 – 2009, Schwander et al. 2017

3. Station data

Reference: 1961 – 2020 ECAD, Meteoswiss

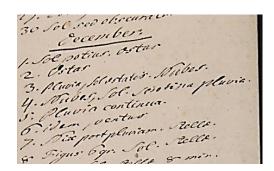
Historical: 1763 – 1863 CHIMES, PALAEO-RA, Improve

 $u^{^{\scriptscriptstyle b}}$


UNIVERSITÄT
BERN

OESCHGER CENTRE
CLIMATE CHANGE RESEARCH

$u^{\scriptscriptstyle b}$


Station data around 1820

METE OROLOGISCHE BEOBACHTUNGEN de durch die naturwessenschaftliche Gesellschuft in Hallen (Höhe über der Meere				
Thermometer Cent	Hygrometer	Niederschläge	Winde	Witterung.
9. U 12. U 3. U 9. U Minim Massis Margan Milling North Mind Massis 10, 0 1 2, 4 12, 6 1 11, 2 11, 2 116, 3 1 20, 4 15, 0	9 U 12 U 3 U 9 U Morgen Milling Nachin Aba 95 86 98 88 94 95 82 88 94 88 80 88	Menge Art	Storgers About	9.U. 12 U. 31 O.U. Morgans Millings Nachum Abend hall hall hall hall hall hall hall hal

Measurements and weather notes, St. Gallen

Weather notes, Einsiedeln

UNIVERSITÄT **OESCHGER CENTRE** CLIMATE CHANGE RESEARCH

Method Data

Evaluation

Case Study

1. Date preparation

2. Analog Resampling

3. Improvement

$u^{^{\scriptscriptstyle b}}$

D UNIVERSITÄT BERN

OESCHGER CENTRE CLIMATE CHANGE RESEARCH

Reference station data

- Gap filling
- Homogenization
- Detrending
- Climate offset

. . .

Historical station data

- Daily means estimation
- Homogenization

. . . .

Temperature grids

Climate offset

Data

- Detrending

Method

Evaluation

Case Study

1. Date preparation

2. Analog Resampling

3. Improvement

 $u^{^{\scriptscriptstyle b}}$

^b Universität Bern

OESCHGER CENTRE
CLIMATE CHANGE RESEARCH

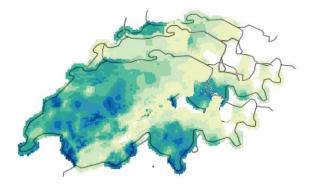
Reference station data

- Gap filling
- Homogenization
- Detrending
- Climate offset

. . . .

Historical station data

- Daily means estimation
- Homogenization


- - - -

Temperature grids

- Climate offset
- Detrending

Best 50 analog days for a day in the past based on the smallest Gower distance

$$D_{Gower}(x_1, x_2) = 1 - \left(\frac{1}{p} \sum_{j=1}^{p} s_j(x_1, x_2)\right)$$

Preconditions: same weather type | same season

1. Date preparation

2. Analog Resampling

3. Improvement

 $u^{^{\mathsf{b}}}$

b UNIVERSITÄT

OESCHGER CENTRE

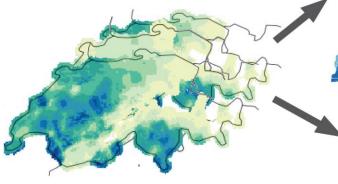
Reference station data

- Gap filling
- Homogenization
- Detrending
- Climate offset

. . . .

Historical station data

- Daily means estimation
- Homogenization

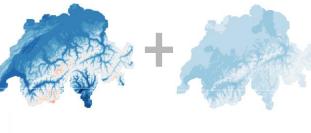

. . .

Temperature grids

- Climate offset
- Detrending

Best 50 analog days for a day in the past based on the smallest Gower distance

$$D_{Gower}(x_1, x_2) = 1 - \left(\frac{1}{p} \sum_{j=1}^{p} s_j(x_1, x_2)\right)$$



Preconditions: same weather type | same season

Temperature

Ensemble Kalman Fitting

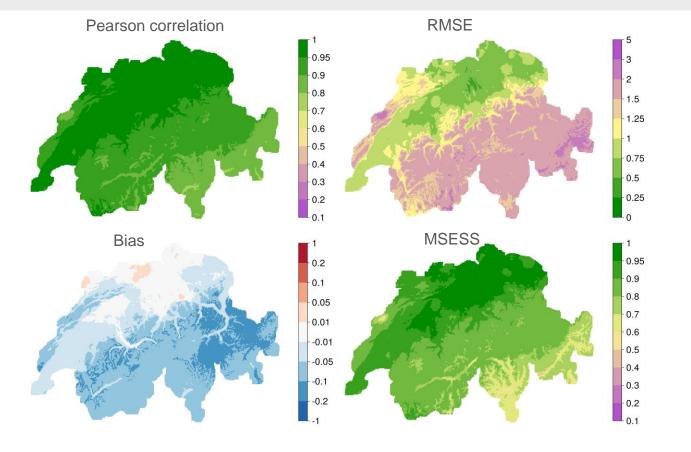
$$\overline{x}^a = \overline{x}^b + \mathbf{K} (y - H\overline{x}^b)$$

Precipitation

Quantile mapping
> fitted in reference period and applied to historical period

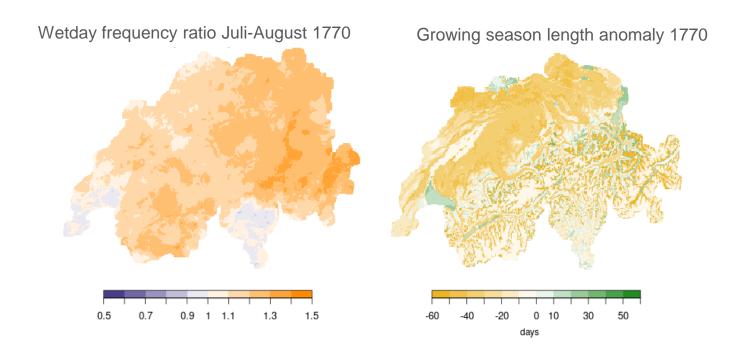
$$\boldsymbol{P}_{\mathrm{o}} = h(\boldsymbol{P}_{\mathrm{m}})$$

Data


Method

Evaluation

Case Study



The double catastrophy 1769 - 1772

»dass sich hie und da Gletscher ansezen möchten«

...Lake Zurich reached a catastrophic level... (Collet, 2019)

 $u^{^{\scriptscriptstyle b}}$

D UNIVERSITÄT BERN OESCHGER CENTRE

