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◼ Model-measurement discrepancies still exist in both the deposition pattern 
and spatiotemporal concentration distributions for Fukushima accident. 

◼ One crucial source of the above uncertainties is the modeling of wet 
scavenging.[1]

Background

Ratio of wet/dry deposition 
simulated by Katata [4]

Taylor diagram results of 2nd and 3rd MIP [2, 3]



Background

◼ The in-cloud scavenging happens inside the 
cloud where particles serve as cloud nuclei 
and evolve with cloud formation. However, 
since its measurement is quite limited, the 
in-cloud scavenging is usually more difficult 
to model mechanically. 

◼ The below-cloud scavenging takes place 
below the cloud base where the particles 
are absorbed by the precipitation. However, 
the specific parameters of below-cloud 
scavenging schemes still vary over a broad 
range. The variation would be amplified by 
the uncertainty in meteorological input.[5]

◼ The dual uncertainties in wet scavenging 
modeling and the meteorological input 
indicate the importance of improving them 
at the same time.

◼ Online coupled model: WRF-Chem



Methods
◼ In-cloud schemes;

◼ Roselle;

◼ Hertel;

◼ Ellenton/Environ/Scott;

◼ Below-cloud schemes;
◼ Apsimon/Baklanov/Jylha;

◼ CEC;

◼ Mircea.[6]

◼ Ensemble mean: 9 model sets;

◼ Microphysics scheme
◼ the six-category single moment cloud microphysics scheme (6)

◼ the Morrison's double moment cloud microphysics scheme (10)

In-cloud 
schemes
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Validation 

◼ Comprehensive evaluation [2, 3]

◼ Deposition
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◼ Participating models

◼ 25 combinations of the in- and below-cloud 
schemes;

◼ Ensemble mean of the 9 models with equal 
weight;

◼ The models with only the below-cloud scheme 
Baklanov (Baklanov-6 and Baklanov-10).

Simulation domain



Results and discussions

◼ The consideration of the in-cloud schemes in WRF-Chem remarkably improves the 
cumulative deposition simulation for most models.

◼ Especially at Nakadori, where the depositions were missing in the previous below-cloud-
only WRF-Chem.

RANK = 2.92 RANK = 3.03 RANK = 3.39

◼ The in-cloud scheme plays a more dominant role in simulating 137Cs transport 
following the FDNPP accident than the below-cloud scheme, with respect to the 
detailed deposition pattern.



Results and discussions
◼ Those in-cloud schemes considering cloud parameters also improve the 

atmospheric concentration simulations.

◼ The ensemble mean achieves satisfactory performance in general.



Results and discussions
◼ Evaluation of each plume

◼ P8: The in-cloud schemes solely relying on rain intensity are quite sensitive to 
meteorology and show varied performances in the tested plume events. 



Results and discussions
◼ Spatial patterns of the plumes



Conclusions

◼ The modification of microphysical scheme from WSM6 to MORR could improve 
the meteorological input and simulation at the same time but to a limited extent 
while the improvement of wet deposition scheme is more influential but model-
dependent.

◼ The consideration of the in-cloud schemes in WRF-Chem remarkably improves the 
cumulative deposition simulation for most models, especially at Nakadori, while in 
concentration prediction, only in-cloud schemes considering cloud parameters 
shows better and stable performances.

◼ The Roselle-Bakla, Hertel-Bakla and Roselle-Apsimon are the best among all the 
compared models, indicating a better allocation between deposition and concentration.

◼ The in-cloud scheme plays a more dominant role in simulating 137Cs transport following 
the FDNPP accident than the below-cloud scheme, with respect to both the detailed 
deposition pattern and atmospheric concentration distributions.

◼ The in-cloud schemes solely relying on rain intensity are quite sensitive to meteorology 
and show varied performances in the tested plume events.

◼ The model ensemble mean shows fair and stable results in various plume events.



Thank you for your attention!
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