

Sensitivity analysis on the wet deposition parameterization for ¹³⁷Cs transport modeling following the Fukushima Daiichi Nuclear Power Plant accident

Shuhan Zhuang, Xinwen Dong, and Sheng Fang

Institute of nuclear and new energy technology, Tsinghua University, Beijing, China

Background

 Model-measurement discrepancies still exist in both the deposition pattern and spatiotemporal concentration distributions for Fukushima accident.

One crucial source of the above uncertainties is the modeling of wet

scavenging.[1]

Taylor diagram results of 2nd and 3rd MIP [2, 3]

Ratio of wet/dry deposition simulated by Katata [4]

Background

- The in-cloud scavenging happens inside the cloud where particles serve as cloud nuclei and evolve with cloud formation. However, since its measurement is quite limited, the in-cloud scavenging is usually more difficult to model mechanically.
- The below-cloud scavenging takes place below the cloud base where the particles are absorbed by the precipitation. However, the specific parameters of below-cloud scavenging schemes still vary over a broad range. The variation would be amplified by the uncertainty in meteorological input.^[5]
- The dual uncertainties in wet scavenging modeling and the meteorological input indicate the importance of improving them at the same time.
- Online coupled model: WRF-Chem

Methods

- In-cloud schemes;
 - Roselle;
 - Hertel;
 - Ellenton/Environ/Scott;
- Below-cloud schemes;
 - Apsimon/Baklanov/Jylha;
 - CEC;
 - Mircea.^[6]
- Ensemble mean: 9 model sets;
- Microphysics scheme
 - the six-category single moment cloud microphysics scheme (6)
 - the Morrison's double moment cloud microphysics scheme (10)

In-cloud schemes	Scavenging coefficient (s ⁻¹)
Roselle	$\Lambda = \frac{1}{3600} \left(1 - exp \left(-10^3 \Delta z \frac{LWC}{p_0} \right) \right)$
Hertel	$\Lambda_i = 1.25 \times p_0^{0.64} / H_i$
Ellenton	$\Lambda = 3.97 \times 10^{-4} p_0^{0.31}$
Environ	$\Lambda = 4.2 \times 10^{-4} p_0^{0.79}$
Scott	$\Lambda = 3.5 \times 10^{-4} p_0^{0.6}$

Validation

Simulation domain

- Comprehensive evaluation [2, 3]
- Deposition

$$RANK = CC^{2} + \left(1 - \left| \frac{FB}{2} \right| \right) + \frac{FMS}{100} + \left(1 - \frac{KSP}{100} \right)$$

Concentration

RANK2

$$= \frac{FAC2}{100} + \frac{CAPTURE}{100} + F \times \left(1 - \frac{OVERESTIMATE}{100}\right)$$

- Participating models
 - 25 combinations of the in- and below-cloud schemes;
 - Ensemble mean of the 9 models with equal weight;
 - The models with only the below-cloud scheme Baklanov (Baklanov-6 and Baklanov-10).

 The in-cloud scheme plays a more dominant role in simulating ¹³⁷Cs transport following the FDNPP accident than the below-cloud scheme, with respect to the detailed deposition pattern.

- Those in-cloud schemes considering cloud parameters also improve the atmospheric concentration simulations.
 - The ensemble mean achieves satisfactory performance in general.

- Evaluation of each plume
 - P8: The in-cloud schemes solely relying on rain intensity are quite sensitive to meteorology and show varied performances in the tested plume events.

Spatial patterns of the plumes

Conclusions

- The modification of microphysical scheme from WSM6 to MORR could improve the meteorological input and simulation at the same time but to a limited extent while the improvement of wet deposition scheme is more influential but modeldependent.
- The consideration of the in-cloud schemes in WRF-Chem remarkably improves the cumulative deposition simulation for most models, especially at Nakadori, while in concentration prediction, only in-cloud schemes considering cloud parameters shows better and stable performances.
 - The Roselle-Bakla, Hertel-Bakla and Roselle-Apsimon are the best among all the compared models, indicating a better allocation between deposition and concentration.
 - The in-cloud scheme plays a more dominant role in simulating ¹³⁷Cs transport following the FDNPP accident than the below-cloud scheme, with respect to both the detailed deposition pattern and atmospheric concentration distributions.
 - The in-cloud schemes solely relying on rain intensity are quite sensitive to meteorology and show varied performances in the tested plume events.
 - The model ensemble mean shows fair and stable results in various plume events.

Thank you for your attention!

References

- [1] Kajino, M., Sekiyama, T.T., et al., 2018. Lessons learned from atmospheric modeling studies after the Fukushima nuclear accident: Ensemble simulations, data assimilation, elemental process modeling, and inverse modeling. Geochem. J. 52, 85–101.
- [2] Sato, Y., Takigawa, et al., 2018. Model intercomparison of atmospheric 137Cs from the Fukushima Daiichi Nuclear Power Plant accident: Simulations based on identical input data. J. Geophys. Res. Submitted, 748–765.
- [3] Sato, Y., Sekiyama, T.T., Fang, S., et al., 2020. A model intercomparison of atmospheric 137Cs concentrations from the Fukushima Daiichi Nuclear Power Plant accident, phase III: Simulation with an identical source term and meteorological field at 1-km resolution. Atmos. Environ. X 7.
- [4] Sanada, Y., Katata, G., et al., 2018. Altitudinal characteristics of atmospheric deposition of aerosols in mountainous regions: Lessons from the Fukushima Daiichi Nuclear Power Station accident. Sci. Total Environ. 618, 881–890.
- [5] Quérel, A., Roustan, Y., et al., 2014. Hints to discriminate the choice of wet deposition models applied to an accidental radioactive release. HARMO 2014 16th Int. Conf. Harmon. within Atmos. Dispers. Model. Regul. Purp. Proc. 627–631.
- [6] Sportisse, B., 2007. A review of parameterizations for modelling dry deposition and scavenging of radionuclides. Atmos. Environ. 41, 2683–2698.

•