

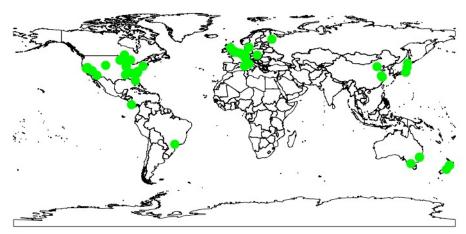
Photosynthetic acclimation under CO2 fertilization: new perspectives from current experiments

Yunke Peng, Iain Colin Prentice, Kevin Van Sundert, Sara Vicca, Benjamin Stocker

Department of Environmental Systems Science, ETH, Universitätsstrasse 2, 8092 Zurich, Switzerland (yunke.peng@usys.ethz.ch)

Abstract

Background


Reductions in the maximum rate of carboxylation (V_{cmax}) and electron transport (J_{max}) under elevated CO₂ were explained by constraints of:

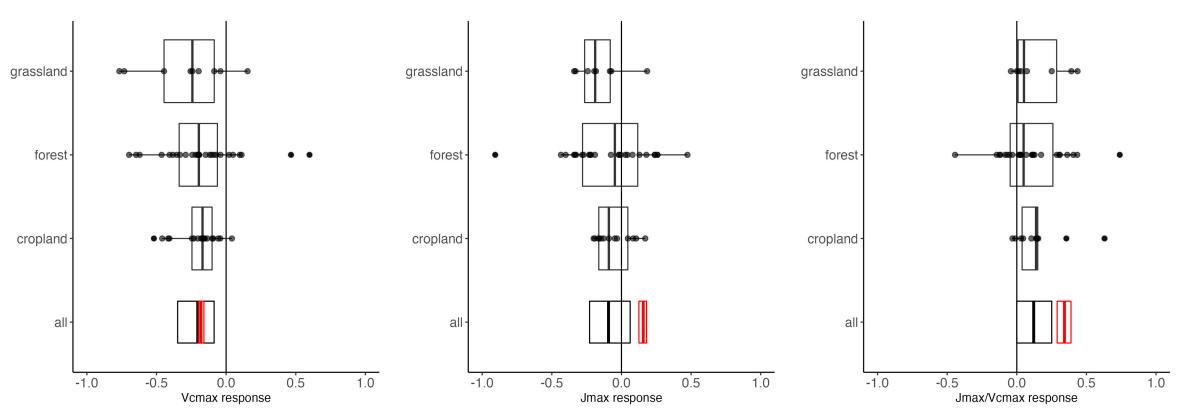
- N demand (Terrer et al. 2018; Smith & Keenan 2020; Dong et al. 2022)
 - Rubisco investment in leaf
 - N acquisition from belowground
- N supply (Luo et al. 2004)

Objectives

To better understand V_{cmax} acclimation to elevated CO_2 and balance the evidence for contrasting model formulations.

- Contrasting measurement vs. optimality-based model (Prentice et al. 2014; Wang et al. 2017).
- With collections of biomass, allocation, leaf and soil traits, to test all possible hypothesis in meta-analysis.

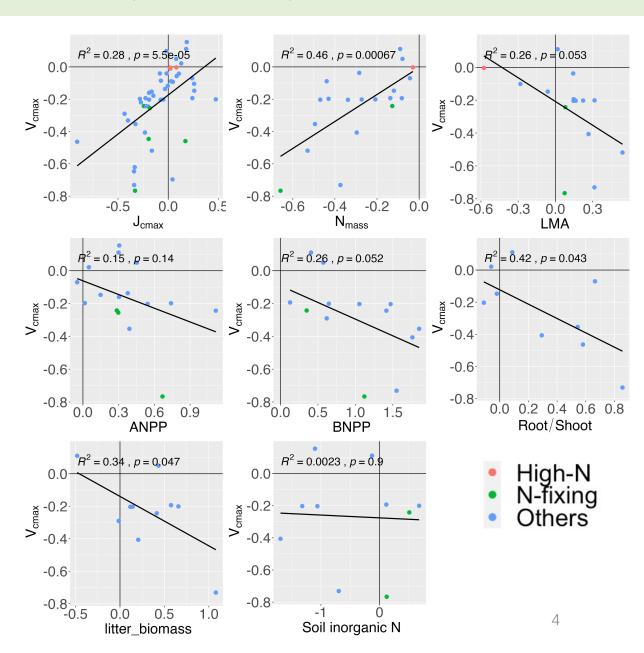
51 CO_2 fertilisation sites for measuring V_{cmax} and J_{cmax}


Swiss FACE experiment (Grassland Group, ETH)

$V_{\rm cmax}$ and $J_{\rm max}/V_{\rm cmax}$ responses captured by optimality model

- **V**_{cmax} **reduction**: Increasing CO₂ reduces cost of carboxylation, requiring less investment of Rubisco (an important photosynthetic enzyme for carboxylation) to support a given rate of photosynthesis.
- J_{max} / V_{cmax} increase: plants underinvesting J_{max} than V_{cmax} , limiting potential leaf photosynthesis at eCO₂.

Sensitivity coefficient =
$$\frac{\ln (V_{cmax}[ele.] / Vcmax [amb.])}{\ln (CO_2 [ele.] / CO_2 [amb.])}$$



Photosynthetic acclimation to eCO₂ explained by optimality principles

- V_{cmax} , J_{max} and N_{mass} decrease consistently
- LMA increases with CO₂
- The more V_{cmax} decreases, the more NPP and root allocation increases:
 - Additional photosynthate is produced, with higher root allocation shown to transport more N required for higher NPP.
- V_{cmax} response was irrelevant to N supply

