

EGU22-1887

Effects of biochar addition into intensiveolive orchard soils under deficit irrigation

Paloma Campos^{1,2}, Águeda Sánchez-Martín², **Arturo Santa-Olalla**³, Ana Z. Miller², and José M. de la Rosa²

¹Department of Crystallography, Mineralogy and Agricultural Chemistry, University of Seville, Seville, Spain

²Institute of Natural Resources and Agrobiology of Seville, Seville, Spain

³Microal S.L., Castilleja de la Cuesta Av., 5, 41110, Bollullos de la Mitación, Spain

*arturosantaloz@gmail.com, pcampos1@us.es

Introduction

Agriculture challenge

Growing population

Cultivation of olives

- Mediterranean region (7.7 million hectares)
- Spain (2.5 million hectares)

Olive sector concerns

- Super-intensive cultivation
- High requirement of irrigation
- Huge amounts of residual biomass

Valorisation of residual biomass

Biochar and compost

Which are the impacts on...?

- crop productivity
- soil properties
- plant physiology

Materials and methods

Organic amendments

Olive pomace biochar (OB)

Slow pyrolysis (15 min, 500 °C)

pH: 9.90±0.05 WHC: 78±15%

C and N contents: 56.3±1.7% and 1.73±0.03%

EC: 13,700±389 µS cm⁻¹

Green compost (GC)

Mixture of garden pruning wastes and pine wood shavings

pH: 8.30±0.20 WHC: 66±20%

C and N contents: 149±2% and 6.8±0.2%

EC: 1,184±177 μS cm⁻¹

Experimental setup

"La Hampa" experimental farm (Coria del Río, Spain, 37°17′ N, 6°3′ W)

2021

Total precipitation: 443.40 mm

Total irrigation: 752.39 mm

Materials and methods

Four treatments:

- Control plots with no amendment (C; control)
- Olive pomace biochar at dose of 40 t ha⁻¹ (OB)
- Green compost at a dose of 40 t ha⁻¹ (GC)
- OB+GC at a dose of 20 t ha⁻¹ each (OB+GC)

Analysis performed

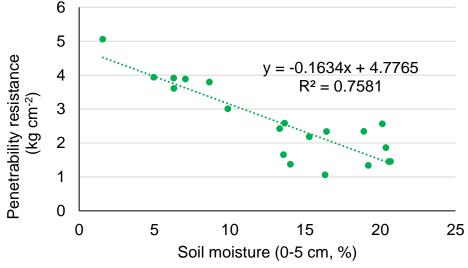
- ☐ Soil properties pH, EC, WHC
- ☐ Soil humidity and resistance to penetrability at field
- □ Physiological status of olive trees
 Midday stomatal conductance (g_s), net photosynthesis rate
 (A_N) and maximum rate of electron transport (ETRmax)
- ☐ Olive and oil productivity per tree

(no differences below 10-20 cm, data not shown)

Effects on soil properties

	Sample	Day of		Treatments			
	depth	year	Month	С	OB+GC	GC	ОВ
pH (1:5)	0-5 cm	118	April	7.6±0.5 ^c	9.4±0.1 ^b ↑	8.1±0.2 ^c	9.7±0.4 ^a ↑
		159	June	7.7±0.1 ^c	9.4±0.0 ^b	7.4 ± 0.0^{d}	9.9±0.0 ^a
		251	September	8.2 ± 0.0^{c}	9.5±0.0 ^a	8.3 ± 0.0^{c}	9.3 ± 0.0^{b}
		287	October	8.9±0.1 ^b	10.1±0.1 ^a	8.6 ± 0.0^{c}	9.1 ± 0.0^{b}
	5-10 cm	118	April	8.1±0.2 ^b	9.1±0.2 ^a ↑	8.2±0.2 ^b	9.3±0.4 ^a ↑
		159	June	7.7±0.1 ^d	8.1±0.1 ^c	8.3±0.1 ^b	9.7±0.0 ^a
		287	October	9.1±0.1 ^c	10.1±0.1 ^a	9.4 ± 0.0^{b}	9.0±0.0 ^c
EC [µS cm ⁻¹] (1:5)	0-5 cm	118	April	191±56 ^c	743±330 ^{ab}	↑ 450±167 ^b ↑	754±211 ^a
		159	June	227±81 ^d	475±39 ^c	1242±22 ^a	789±33 ^b
		251	September	1343±12 ^c	1798±102 ^b	2330±42 ^a	1185±49 ^c
		287	October	904±13 ^c	1964±12 ^a	1193±6 ^b	473±30 ^d
	5-10 cm	118	April	167±32 ^c	307±109 ^{ab}	276±112 ^b	353±110 ^a
		159	June	431±21 ^a	180±10 ^b	309±85 ^{ab}	435±26 ^a
		287	October	305±25 ^b	478±2 ^a	274±7 ^b	217±4 ^c
WHC (%)	0-5 cm	118	April	66.9±5.0 ^a	50.6±4.6 ^b	62.6±6.2 ^a	57.0±9.0 ^{ab}
		159	June	27.1±3.1 ^b	67.9±11.0 ^a	55.5±23.8 ^{ab}	59.6±14.8 ^{ab}
		251	September	64.8±11.6 ^a	61.9±5.3 ^a	83.5±9.4 ^a	52.7±2.5 ^a
		287	October	53.4±0.5 ^{ab}	84.0±21.5 ^a	45.6±4.9 ^b	71.8±8.6 ^{ab}
	5-10 cm	118	April	63.6±10.3 ^a	49.6±5.0 ^a	52.7±8.9 ^a	59.8±4.8 ^a
		159	June	62.9±10.4 ^a	41.7±8.9 ^a	55.9±14.5 ^a	57.0±14.1 ^a
		287	October	53.8±9.0 ^b	78.5±5.3 ^a	48.6±1.8 ^b	67.8±13.2 ^{ab}

Different letters indicate significant differences between treatments in the same sampling (p<0.05).



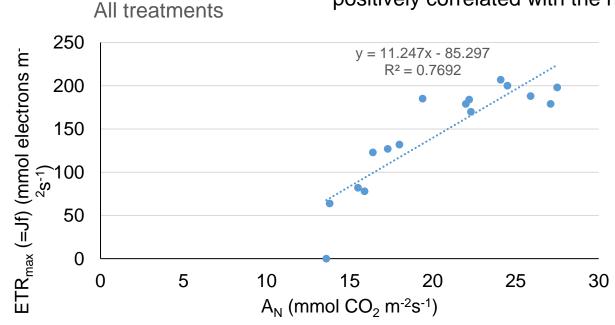
Effects on soil properties

Soil moisture and penetrability (in situ parameters) of unamended and amended soils

						U
	Sample	Season	Treatments			
	depth		С	OB+GC	GC	ОВ
Soil moisture (%)	0-5 cm	Spring	7.1±6.5 ^c	13.6±6.0 ^b	13.4±6.7 ^b	15.5±5.4 ^a
		Summer	11.6±7.8 ^b	20.3±0.3 ^a	19.9±1.8 ^a	20.1±1.7 ^a
		Autumn	16.7±5.5 ^a	19.9±1.2 ^a	18.6±3.3 ^a	19.0±2.6 ^a
		Winter	11.2±7.9 ^c	12.2±6.9 ^{bc}	17.5±5.3 ^{ab}	18.7±2.6 ^a
	5-10 cm	Spring	11.5±6.2 ^b	17.0±3.3 ^a	17.3±2.9 ^a	18.0±2.3 ^a
		Summer	17.1±4.8 ^b	20.6±0.1 ^a	20.6±0.2 ^a	20.2±3.0 ^a
		Autumn	19.5±2.2 ^a	20.5.±0.2 ^a	20.1±1.3 ^a	20.5±0.2 ^a
		Winter	17.3±3.8 ^a	16.1±4.0 ^a	20.4±0.3 ^a	20.4±0.2 ^a
Penetrability (kg cm ⁻²)		Spring	3.8±1.5 ^a	2.5±1.5 ^b	2.6±1.5 ^b	2.0±1.1 ^c
		Summer	4.0±1.9 ^a	1.7±1.1 ^b	1.8±1.0 ^b	1.3±0.8 ^b
		Autumn	3.5±1.7 ^a	1.2±0.3 ^c	1.8±0.9 ^b	1.5±0.9 ^b
		Winter	4.7±1.6 ^a	2.0±1.0 ^c	3.7±1.7 ^b	2.6±1.2 ^c

Different letters indicate significant differences between treatments in the same sampling (p<0.05).

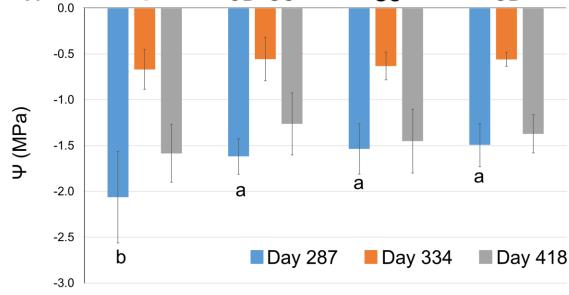
The higher the moisture, the lower the resistance to penetrability.


Biochar (40 T ha⁻¹) was the most effective in increasing soil moisture.

Soil moisture of amended soils increased during the low irrigated periods.

Effects on plant physiology

Maximum rate of electron transport (ETR $_{\rm max}$) was positively correlated with the net photosynthesis rate (A $_{\rm N}$).



Physiological markers of plant stress of the olive trees from the OB plots improved at the harvesting time.

GC

OB

OB+GC

Productivity: Olive yields and oil per tree

Treatment	Production of olives (kg per tree)	Humidity of olives (% w/w)	Total fat (% w/w)	Oil free acidity	Production of olive oil (kg per tree)
С	10.1±0.4a	61.7±0.3a	15.1±0.2a	0.31±0.02	1.52
GC	10.5±0.3a	61.0±0.4a	15.8±0.4a	0.35 ± 0.03	1.66
OB+GC	10.8±0.2a	61.7±0.3a	15.2±0.2a	0.31±0.03	1.64
ОВ	11.9±0.3b	63.9±0.5b	14.1±0.3b	0.29±0.04	1.68

Different letters indicate significant differences between treatments for the same parameter (p<0.05).

Conclusions

The application of organic amendments with high porosity and water retention capacity:

modified the soil physical properties, reducing soil compaction

Improved the water status of olive trees in super-intensive olive trees plantations

increased olive yields about 15%, although net olive oil production per tree was maintained

This work shows that there exists a sustainable way to significantly reduce the irrigation needs.

Fundación BBVA

Thank you for your attention

Acknowledgements:

- MOSS group (IRNAS-CSIC)
- ❖ The BBVA foundation (scholarship Leonardo to "Investigadores y Creadores Culturales 2020", (project Ref. IN[20]_CMA_0033).
- Plant Eco-Physiology Service at IRNAS-CSIC,
- La Hampa Experimental Farm

Further info: arturosantaloz@gmail.com, pcampos1@us.es; jmrosa@irnase.csic.es

EGU22-1887