

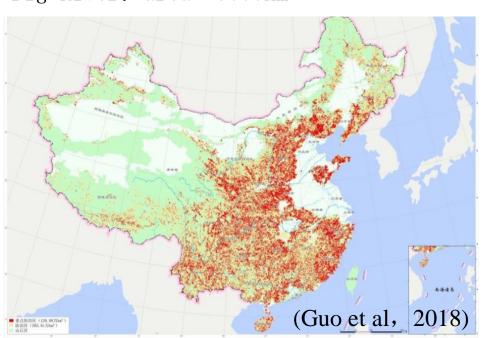
Variable Runoff Generation Layer distributed hydrological model of hilly regions

JianFei Zhao, ZhongMin Liang*, JinTao Liu, BinQuan Li, and YaNan Duan

College of Hydrology and Water Resources
Hohai University
May 26,2022

1.Background

1.1 Flash flood


Classify by Watershed Area:

Flash flood ditch: area≤200km²

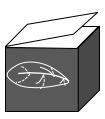
Small and medium river:

200km²<area≤3000km² **Hilly Regions**

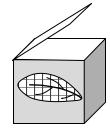
Big River: area > 3000 km²

40min

1.Background


1.2 Hydrological model

The primary mean of flood forecasting


Important non-engineering measure of flash flood prevention and control

Empirical model

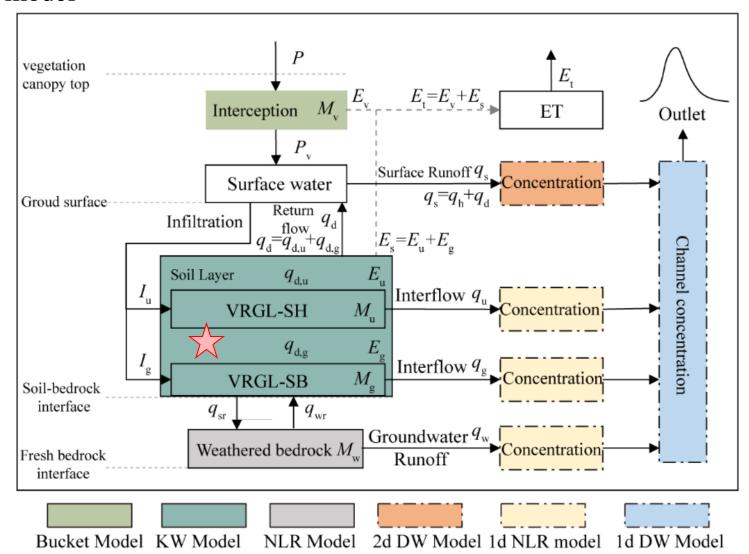
Lump model

Distributed model

Previous studies:

- a. The data-oriented empirical/ lump model is difficult to satisfy flash flood forecasting.
- b. Distributed hydrological model is the future trend as it can realize forecasting at any cross section.

Bottleneck:


- a. The sophisticated model structure.
- b. Rapid forecasting to tackle the flash flood.

A new model structure needed

★The runoff generation module

2. Research content

2 VRGL model

3.Summary

- 1. The variable runoff generation layer concept is proposed based on the new understanding of hillslope hydrological experiments to address the problem of <u>flash flood forecasting in hilly regions</u>.
- 2. The variable runoff generation layer concept has expanded the depiction of interflow from soil horizon to **soil-bedrock interface** and provided **a unified description** of the infiltration excess and the saturation excess runoff.
- 3. We establish **the variable runoff generation layer distributed hydrological model (VRGL)** based on the concept, the simulation result of the Tunxi watershed indicated that the accuracy of the VRGL model is sufficiently high for flood forecasting in hilly regions.

Thanks You!

