

DTVT: a GIS tool for the automatic validation of physically based landslide models and the identification of the optimal warning criterium

Segoni S, Pappafico G, Masi EB, Rossi G, Tofani V

Distributed physically based models

Basic principles

- Complex process-based equations
- Many input parameters (morphology, geotechnics, hydrology, rainfall, roots...)
- Probabilistic approach

Examples:

TRIGRS HIRESSS

• • •

Distributed physically based models

Can be used for LEWS?

LIMITATIONS:

- Complexity (difficult to implement, computational resources)
- Static input data: many, with very high spatial variability
- Difficult validation, difficult interpretation

Contribution of this work

Rationale

Spatial unit: pixels -> small watersheds

Warning criterium: A watershed is considered unstable (and receives a warning)

X% of the area has a probability of landslide triggering > Y% Instability diffusion threshold (IDT)

Failure Probability Threshold (FPT)

Double Threshold Validation Tool (DTVT)

DTVT tool for GIS

INPUT DATA

- Slope failure probability maps (output of other models e.g. TRIGRS, HIRESSS...)
- Shapefile of reaggregation units (warning units)
- Validation dataset (inventory of observed landslides)

DTVT tool – ArcGIS model builder

DTVT tool — RESULTS

AUTOMATIC VALIDATION OUTPUTS

- Validation map
- Contingency matrix

Additional results

Selection of the optimal outcome based on skill scores

Example:
Efficiency =
$$(TP + TN) / (TP + TN + FP + FN)$$

Efficiency		FPT					
		60%	70%	75%	80%	85%	90%
IDT	3%	0,650	0,673	0,696	0,725	0,740	0,767
	5%	0,708	0,735	0,754	0,788	0,817	0,823
	10%	0,804	0,821	0,837	0,852	0,858	0,873
	15%	0,850	0,875	0,871	0,890	0,877	0,888

Implications for LEWS

Selection of the optimal configuration to be used to issue warnings in a prototype LEWS

Example = avoiding missed alarms is the priority

- 1- Identification of all configurations that maximize True Positives (thus minimizing FN)
- 2- Among them, selection of the configuration with less false alarms (FP)

General vs particular

The identified <u>double-threshold criteria are stable</u> if DTVT is applied to other rainfall events in the same test site.

BUT

Different test sites may have very different optimal double thresholds:

Valle d'Aosta Alert Zone B – 900 km2 – DTVT= 85/5

Urbino area -100 km2 - DTVT = 35/1

Firenze province -3514 km2 - DTVT = 57/1

Site specific costumization needed before use in LEWS!

Conclusions

- DTVT is a tool that automates and speeds up the process of validation for distributed phisically based models
- DTVT can be used to identify possible warning criteria for LEWS
- DTVT can be requested to the author or downloaded with the related paper (see next slide)

Thank you for your attention

Based on:

Technical Note

A Tool for the Automatic Aggregation and Validation of the Results of Physically Based Distributed Slope Stability Models

Maria Alexandra Bulzinetti ¹, Samuele Segoni ^{1,*}, Giulio Pappafico ², Elena Benedetta Masi ¹, Guglielmo Rossi ³ and Veronica Tofani ¹

https://doi.org/10.3390/w13172313

samuele.segoni@unifi.it