Partially-interpretable neural networks for high-dimensional extreme quantile regression: With application to wildfires within the Mediterranean Basin

Jordan Richards¹ Raphaël Huser¹ Emanuele Bevacqua² Jakob Zscheischler²

¹King Abdullah University of Science and Technology (KAUST)

²Helmholtz Centre for Environmental Research (UFZ)

Data

- We are interested in identifying the drivers of wildfire occurrence and extreme spread ⇒ logistic/parametric extreme quantile regression
- Spatial domain is Mediterranean Basin and southern Europe
- ullet MODIS monthly **burnt area** (BA) for $0.5^{\circ} \times 0.5^{\circ}$ grid-cell
- 2001-2020, all months. 10083 locations, 116337 non-zero values

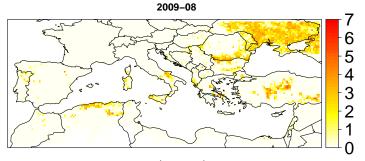


Figure: Map of log(1 + BA) for August 2009.

Parametric regression

The relationships between climate, fuel type/availability and wildfires is generally accepted to be very **complex**.

- [Richards and Huser, 2022] propose PINNs Partially-interpretable
 Neural Networks for conditional density estimation
- Neural networks are "black box" in the sense that it's difficult/impossible to interpret their output - no good for understanding the drivers of risk
- The effect of some predictors is modelled using "interpretable" functions, whilst the rest feed a neural network - Here we use a convolutional neural network

Partially-interpretable neural networks

Let the response follow $\mathcal{F}(\theta(\mathbf{x}))$ with parameter set $\theta(\mathbf{x}) = (\theta_1(\mathbf{x}), \theta_2(\mathbf{x}), \dots)$. Then for all $i = 1, 2, \dots$,

- Split predictor set \mathbf{x} into two **complementary** subsets $\mathbf{x}_{\mathcal{I}}^{(i)}$ and $\mathbf{x}_{\mathcal{N}}^{(i)}$ "interpreted" and "non-interpreted"
- Let

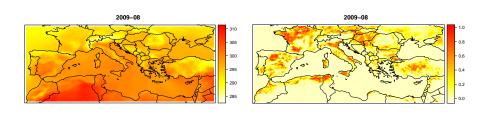
$$\theta_i(\mathbf{x}) = h_i[\eta_0^{(i)} + m_{\mathcal{I}}^{(i)}(\mathbf{x}_{\mathcal{I}}^{(i)}) + m_{\mathcal{N}}^{(i)}(\mathbf{x}_{\mathcal{N}}^{(i)})],$$

for constant intercept $\eta_0^{(i)} \in \mathbb{R}$ and link $h_i : \mathbb{R} \to \mathbb{R}$

- Interpretable: $m_{\mathcal{I}}^{(i)}$, e.g., linear, **spline**. Neural network: $m_{\mathcal{N}}^{(i)}$.
- ullet Functions and subsets **can differ** across components of $oldsymbol{ heta}$
- Our framework applies for any generic parametric distribution \mathcal{F} , e.g., Bernoulli for occurrence, EV distributions for spread

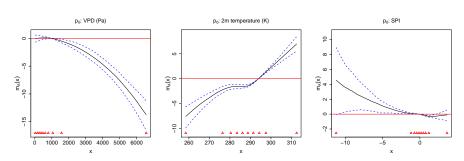
Predictors

- 13 meteorological variables from ERA-5 reanalysis, e.g., air temperature, wind-speed components, evaporation, radiation
- Land cover maps (COPERNICUS) with proportion of grid-cell consisting of one of 21 types, e.g., tree species, urban areas, cropland
- Orographic: mean and s.d. altitude
- Left: 2m air temp (K). Right: cropland proportion. August 2009.
- We interpret the effect of VPD, 2m air temperature and 3-month SPI



Interpretable results

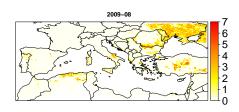
Effect of VPD, 2m temperature and 3-month SPI on *log*-odds of **occurrence probability**. Red triangles are knots, blue dashed lines are 95% confidence envelopes.



Estimated extreme quantile maps

Left: observed. Right: estimated q-quantile for $\log(1+BA)$ with $0.8 \le q \le 0.999$.

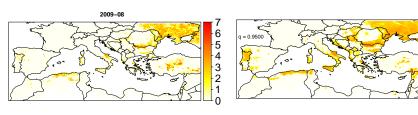
- Extreme quantiles are estimated using a point process model with three parameters
- Location/scale represented as functions of predictors
- Fixed **shape** parameter $\hat{\xi} = 0.25$ (0.23, 0.27) Much lighter-tailed than similar data for the U.S.



Estimated extreme quantile maps

Left: observed. Right: estimated 0.95-quantile for log(1 + BA).

- Extreme quantiles are estimated using a point process model with three parameters
- Location/scale represented as functions of predictors
- Fixed **shape** parameter $\hat{\xi} = 0.25$ (0.23, 0.27) Much lighter-tailed than similar data for the U.S.



References

Richards, J. (2022). pinnEV: Partially-Interpretable Neural Networks for modelling of Extreme Values. R package. Will be made available at github.com/Jbrich95/pinnEV.

Richards, J. and Huser, R. (2022).

High-dimensional extreme quantile regression using partially-interpretable neural networks: With application to U.S. wildfires.

Pre-print. Not available online.

Both will be available alongside extended slides at my website jbrich95.github.io (via QR code).

