

Numerical prediction of the effects of solar energetic particle precipitation on the Martian atmospheric chemical composition

Yuki Nakamura^{1,2}, Naoki Terada¹, Francois Leblanc², Hiromu Nakagawa¹, Shotaro Sakai^{1,3}, Sayano Hiruba¹, Ryuho Kataoka^{4,5}, and Kiyoka Murase^{4,5}

¹Graduate School of Science, Tohoku University, Sendai, Japan

²LATMOS/CNRS, Sorbonne Université, Paris, France

³Planetary Plasma and Atmospheric Research Center, Graduate School of Science, Tohoku University, Sendai, Japan

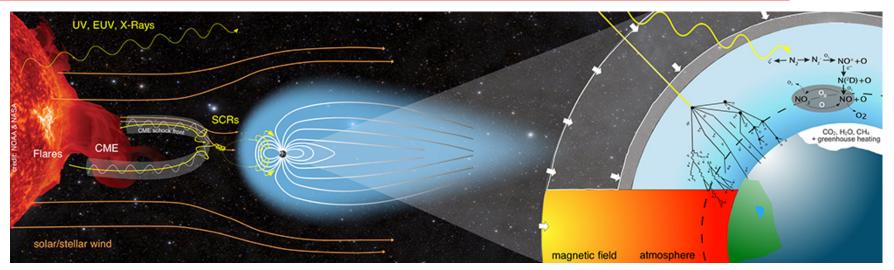
⁴National Institute of Polar Research, Tokyo, Japan

⁵The Graduate University for Advanced Studies, SOKENDAI, Kanagawa, Japan

Introduction: Solar energetic particles (SEPs)

Solar Energetic Particles (SEPs)

 High energy particles (electron, proton and heavy ions) coming from the sun (few tens of keV - few GeV) associated with solar flares and coronal mass ejections.


Effects of SEPs on planetary atmospheres

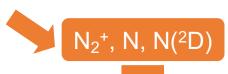
- Increased ionization of atmospheric molecules
- Increased dose rate [Kataoka and Sato, 2015]
- Auroral emissions [Sandford, 1961; Schneider et al., 2015]

Main topic of this study

[Reams, 1999]

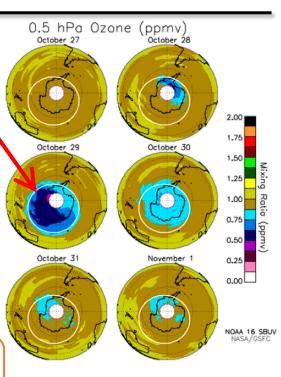
Changes in atmospheric chemistry [Solomon et al., 1981; Airapetian et al., 2016]

Credit: ISSI Team led by K. Herbst & J.L. Grenfell


Introduction: SEP effects on ozone at Earth

Ozone depletion [e.g. Solomon et al., 1981]

- Ozone depletion by ~40 % in the middle atmosphere at polar region during October 2003 SEP event [Jackman et al., 2005].
- Ozone destruction is caused by increases of HOx (OH + HO₂) and NOx (NO + NO₂) during SEP events [e.g. Jackman et al., 2005].


Solar proton precipitation

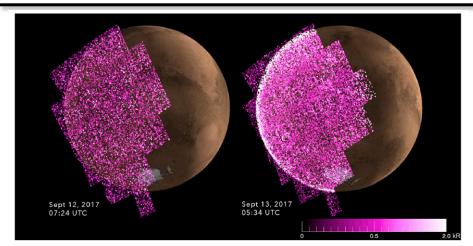
Cluster ion chemistry

 $O_2^+(H_2O)$, $H_3O^+(OH)$ $H_3O^+(OH) + e^- \rightarrow H + OH + H_2O$ Neutral chemistry $N(^2D) + O_2 \rightarrow NO + O$

[Jackman et al., 2005]

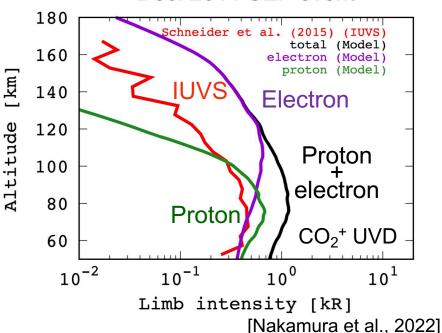
HOx catalytic destruction cycle

$$\begin{array}{c}
OH + O_3 \rightarrow HO_2 + O_2 \\
HO_2 + O \rightarrow OH + O_2
\end{array}$$


Net: $O + O_3 \rightarrow O_2 + O_2$

NOx catalytic destruction cycle

$$\begin{array}{c} NO + O_3 \rightarrow NO_2 + O_2 \\ NO_2 + O \rightarrow NO + O_2 \end{array}$$


Net: $O + O_3 \rightarrow O_2 + O_2$

Introduction: SEP effects on the atmosphere of Mars

[Schneider et al., 2018]

Global diffuse aurora

- MAVEN/IUVS have discovered global diffuse aurora spanning across nightside of Mars during SEP events [Schneider et al., 2015].
- Emission peak at low altitude (~70 km [Schneider et al., 2015; 2018].
- Both SEP electrons and protons contributed to the diffuse auroral emission [Nakamura et al., 2022].

Effects on atmospheric chemistry?

- There is no understanding of the SEP effects on the atmospheric chemistry of Mars.
- Trace Gas Orbiter (TGO) is expected to detect changes in chemical compositions during SEP events in several years of increasing phase of solar cycle 25.

Purposes

To investigate the effects of SEPs on atmospheric chemistry of Mars. To evaluate the detectability of chemical species.

We have developed two numerical models:

① Particle TRansport In Planetary atmospheres (PTRIP)

Monte Carlo model of electron, proton and hydrogen atom transport in the planetary atmospheres [Nakamura et al., 2022].

2 General photochemical model

Designed for adaptability to many planetary bodies (Mars, Jupiter, Earth, Titan, etc.) and flexibility to add/remove/modify chemical reactions by using Python GUI and photochemical calculation routine written in Fortran.

Model: Particle TRansport In Planetary atmosphere (PTRIP)

PTRIP: Monte Carlo model

[Nakamura et al., 2022]

- In PTRIP, equations of motion are solved for each incident particle.
- Random numbers are used for collisional processes.

Collision probability:

$$P_i = 1 - \exp\left[-\sum_{s} n_s(\boldsymbol{l}) \sigma_s^T(E) \Delta l\right]$$

Collision physics

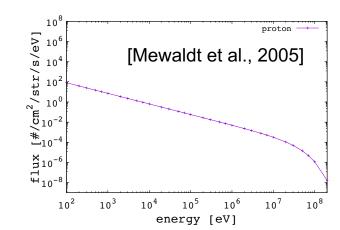
electron: ionization, excitation, dissociation,

elastic

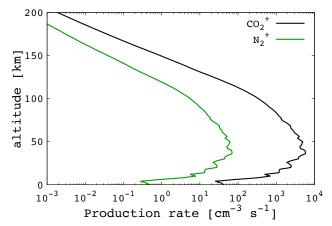
proton : ionization, electron-capture,

elastic

H atom : ionization, charge-stripping,


elastic

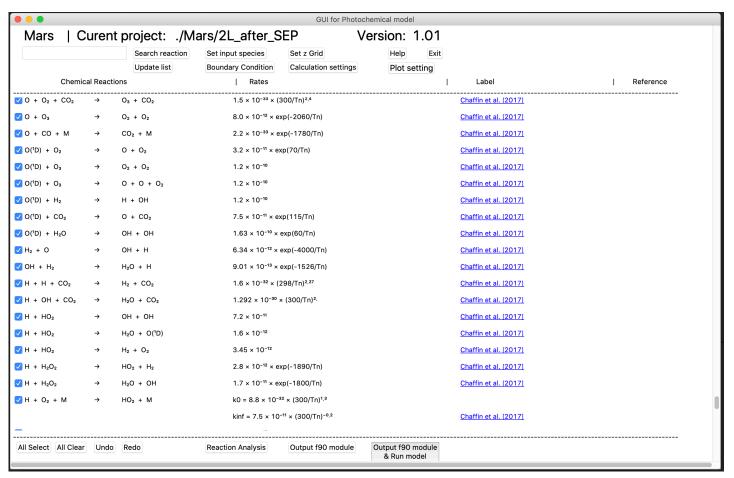
Energy range proton: 100 eV – 200 MeV


Other inputs | Isotropic pitch angle

SEP proton input fluxes

SEP event on 28 Oct. 2003 "Halloween event"

Calculated ionization rate:


• N_2^+ : N^+ : $N: N(^2D) = 1: 0.22: 0.73: 0.95$

[Krasnopolsky, 2009]

Model: General photochemical model

Python GUI + Fortran routine

Designed for adaptability to many planetary bodies (Mars, Jupiter, Earth, Titan, etc.) and flexibility to add/remove/modify chemical reactions by using Python GUI and photochemical calculation routine written in Fortran.

Model: General photochemical model

General photochemical model (1D model)

Solving series of continuity equations by using implicit method.

$$\begin{split} \frac{\partial n_i}{\partial t} &= P_i - L_i - \frac{\partial \Phi_i}{\partial z} \\ \Phi_i &= -n_i D_i \left(\frac{1}{n_i} \frac{dn_i}{dz} + \frac{1}{H_i} + \frac{(1+\alpha_i)}{T} \frac{dT}{dz} \right) - n_i K \left(\frac{1}{n_i} \frac{dn_i}{dz} + \frac{1}{H} + \frac{1}{T} \frac{dT}{dz} \right) \quad \text{for neutrals (molecular \& eddy diffusion),} \\ \Phi_i &= -n_i D_i \left(\frac{1}{n_i} \frac{dn_i}{dz} + \frac{1}{H_i} + \frac{(1+\alpha_i)}{T} \frac{dT}{dz} + \frac{q_i}{e} \frac{T_e/T_i}{p_e} \frac{dp_e}{dz} \right) \quad \text{for ions (ambipolar diffusion),} \end{split}$$

Calculation settings

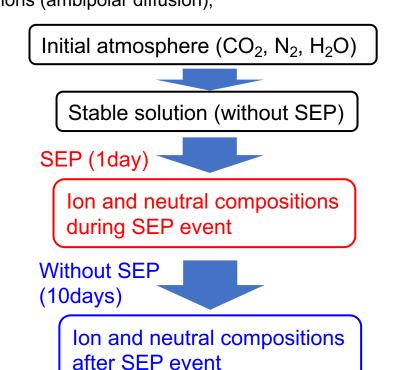
Surface pressure: 6 mbar CO₂

N₂ mixing ratio:
 1.9% at surface

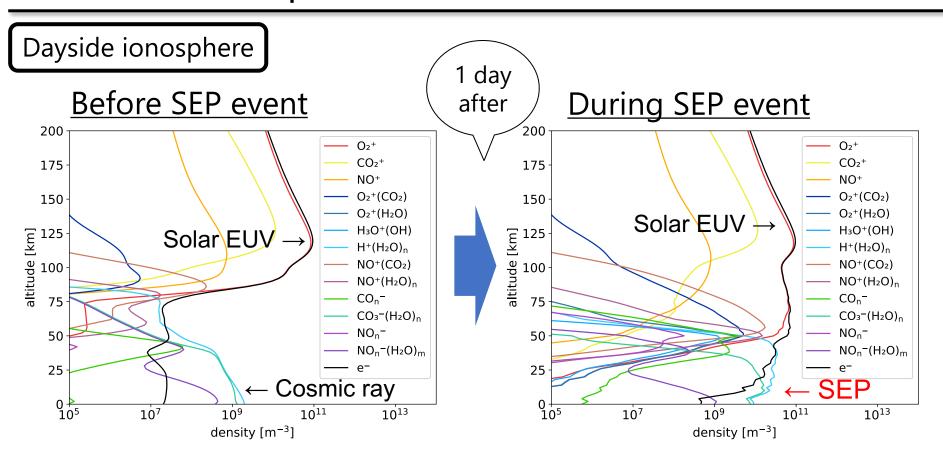
[Mahaffy et al., 2013]

Temperature: Krasnopolsky [2010]

Water vapor: Krasnopolsky [2010]

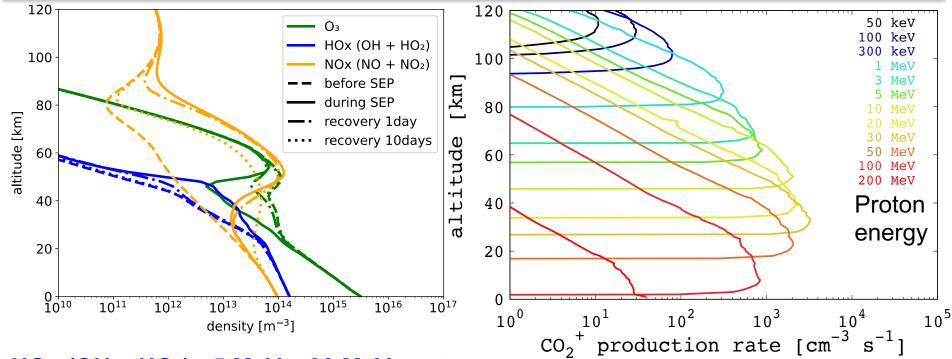

H, H₂ escape: Jeans escape

• O escape flux: 1.2 × 10⁸ [cm⁻²s⁻¹]


[Chaffin et al., 2017]

Chemical reactions (34 neutrals, 48 ions)

 485 chemical reactions are considered. neutral chemistry, ion-neutral chemistry, cluster ion chemistry



Results: Ion composition

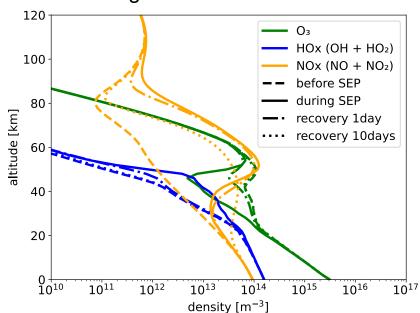
- During an extreme SEP event, ion compositions are largely altered during SEP event below 100 km altitude, producing water cluster ions ~ 10¹¹ [m⁻³] below 70 km, in agreement with a previous study [Sheel et al., 2012].
- ► How do neutrals change during SEP events on Mars?

Results: Changes in neutral compositions

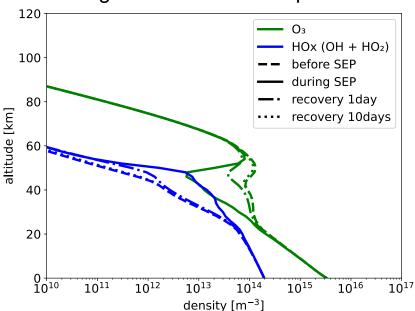
$HOx (OH + HO_2) : 5 MeV - 30 MeV proton$

- Increased by a factor of ~5 at 20-60 km
- Almost recovered 1 day after the end of SEP event.

Ozone O₃ : 5 MeV – 30 MeV proton


- Decreased by a factor of ~ 5 at 20-60 km
- Almost recovered 1 day after the end of SEP event.

$NOx (NO + NO_2) : 100 keV - 30 MeV proton$


- Increased by a factor of ~100 at 20-100 km
- Recovery time scale is relatively long > 10 days.

Results: Changes in neutral compositions

Including all 485 reactions

Including 227 reactions except for N-related

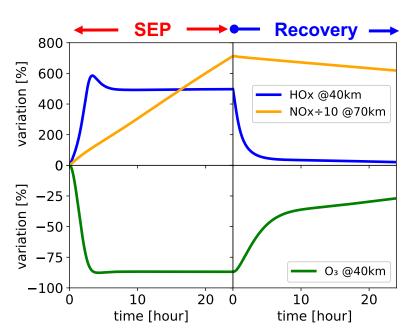
$HOx (OH + HO_2)$: 5 MeV – 30 MeV proton

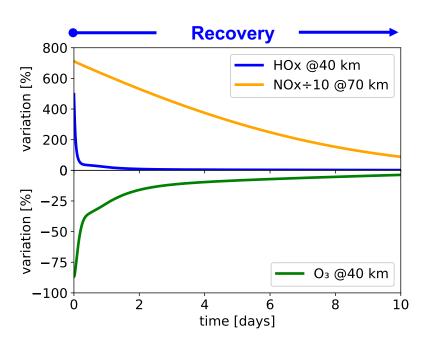
- Increased by a factor of ~5 at 20-60 km
- Almost recovered 1 day after the end of SEP event.

Ozone O₃: 5 MeV – 30 MeV proton

- Decreased by a factor of ~ 5 at 20-60 km
- Almost recovered 1 day after the end of SEP event.

NOx (NO + NO₂): 100 keV - 30 MeV proton


- Increased by a factor of ~100 at 20-100 km
- Recovery time scale is relatively long > 10 days.

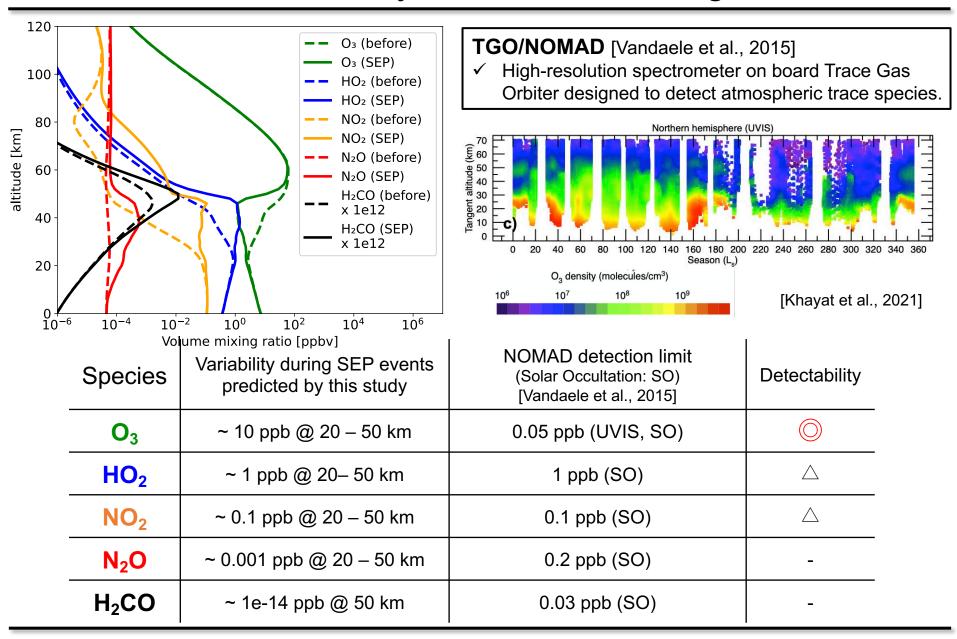

Contribution to O₃ destruction

- HOx: Effective in short-term.
- NOx: Less effective in short-term.
- Short-term ozone depletion during SEP events is driven by HOxcycle via cluster ion chemistry.

Results: Temporal variation during and after SEP events

Temporal variation of O₃, HOx and NOx

Response time scale


HOx and O_3 : ~ 5 hours

- Duration of SEP event does not affect enhancement of HOx and depletion of O₃.
- SEP effects quickly disappear, but slightly remain.
- Loss time scale: 10-100 sec.

NOx: ~ Several days

- Duration of SEP event is important in enhancement of NOx.
- SEP effects remain 10 days after.
- Loss time scale : 10⁴-10⁵ sec

Discussion: Detectability of chemical changes

Chemical processes during SEP events on Mars

 □ Dominant chemical process for O₃ and HOx during SEP events

Impact ionization

R1
$$CO_2 + p^* \rightarrow CO_2^+ + e^- + p^*$$

Formation of cluster ions

R2
$$|CO_2^+| + |CO_2| + |M| \rightarrow |CO_2| + |M|$$

R3
$$CO_2^+(CO_2) + O_2 \rightarrow O_2^+ + 2CO_2$$

R4
$$O_2^+ + CO_2 + M \rightarrow O_2^+(CO_2) + M$$

R5
$$O_2^+(CO_2) + H_2O \rightarrow O_2^+(H_2O) + CO_2$$

R6
$$O_2^+(H_2O) + H_2O \rightarrow H_3O^+(OH) + O_2$$

Production of OH and H

R7
$$H_3O^+(OH) + H_2O \rightarrow H^+(H_2O)_2 + OH$$

R8
$$CO + OH + M \rightarrow CO_2 + H + M$$

R9
$$H^{+}(H_{2}O)_{n} + e^{-} \rightarrow H + nH_{2}O$$

Catalytic destruction of ozone (effective)

R10
$$H + O_3 \rightarrow OH + O_2$$

R11 OH + O
$$\rightarrow$$
 H + O₂

Dominant chemical process for NOx during SEP events

Impact ionization

R1
$$N_2 + p^* \rightarrow N_2^+ + e^- + p^*$$

R2
$$N_2 + p^* \rightarrow N^+ + N(^2D) + p^*$$

R3
$$N_2 + p^* \rightarrow N + N(^2D) + p^*$$

Neutral chemistry

R4
$$N(^2D) + CO_2 \rightarrow NO + CO$$

R5 NO+ N
$$\rightarrow$$
 N₂ + O (> 70 km)

R6 NO + O + M
$$\rightarrow$$
 NO₂ + M (50 - 70 km)

R7 NO+
$$HO_2 \rightarrow NO_2 + OH (0 - 50 \text{ km})$$

R8
$$N + NO_2 \rightarrow N_2O + O$$

Catalytic destruction of ozone (less effective)

R9 NO+
$$O_3$$
 \rightarrow NO₂ + O₂

$$R10 NO_2 + O \rightarrow NO + O_2$$

Summary

- Changes in atmospheric compositions during SEP events on Mars are investigated by using PTRIP and a general photochemical model.
- Ozone depletion by a factor of 5 could be expected during SEP events due to the precipitation of 5-30 MeV protons.
- Duration of SEP event does not affect variation of HOx and ozone, but it affects enhancement of NOx.
- ◆ Variation of ozone can be detected by TGO/NOMAD, HO₂ and NO₂ are just around detection limit, whereas N₂O and H₂CO are not expected to be detected.