

EGU22-220

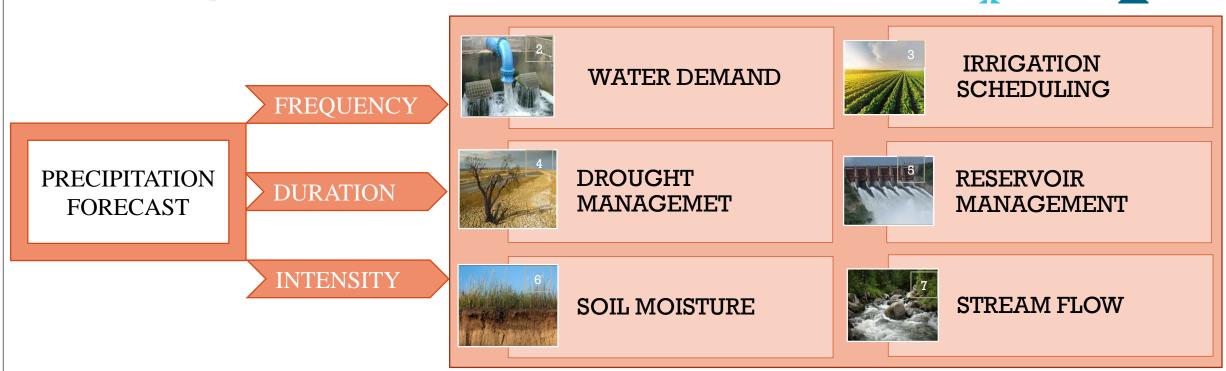
INTERMODEL COMPARISON OF SHORT TO MEDIUM RANGE PRECIPITATION FORECAST OVER THE INDIAN SUB-CONTINENT

Authored by:

Sakila Saminathan (101814002@smail.iitpkd.ac.in)

Subhasis Mitra


INTRODUCTION



• Numerical Weather Prediction (NWP) models provides precipitation forecast for the near future.

• Need for Precipitation forecast:

RESEARCH QUESTION

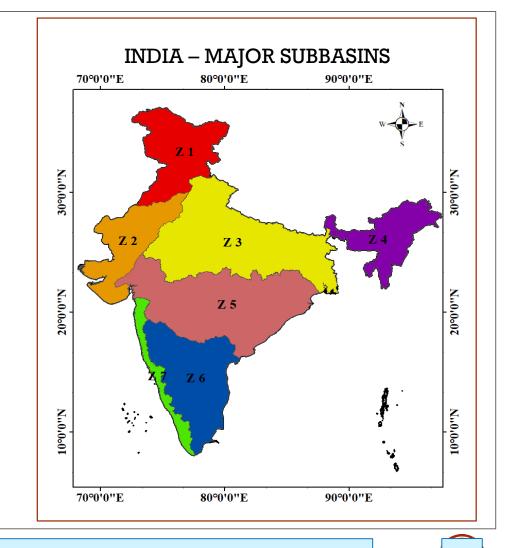
WHY NWP INTERMODEL COMPARISION ??

- □ Precipitation forecast is such a valuable information!!
- □But various Numerical Weather Prediction (NWP) models!!
- □Need for spatio-temporal assessment to find the better performing models!!

OBJECTIVES

- □To quantify the performance of short to medium range (1 to 7days) NWP models precipitation forecast over the Indian subcontinent.
- □Intercompare precipitation forecast information from four different NWP models.
- □Season and basin wise analysis of precipitation forecast information over the Indian subcontinent.

STUDY AREA

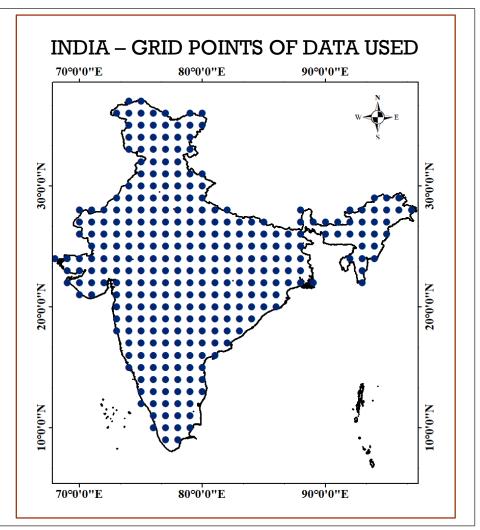


Subbasin: (CWC classification)

Basins	Code
Northern basin	Z 1
Northwestern basin	Z 2
Indo Gangetic plain	Z 3
Northeastern basin	Z 4
Central basin	Z 5
Southern basin	Z 6
Western Ghats	Z 7

Seasons: (IMD classification)

Seasons	Months	
Monsoon [S1]	June - September	
Non monsoon [S2]	January - May & October –December	



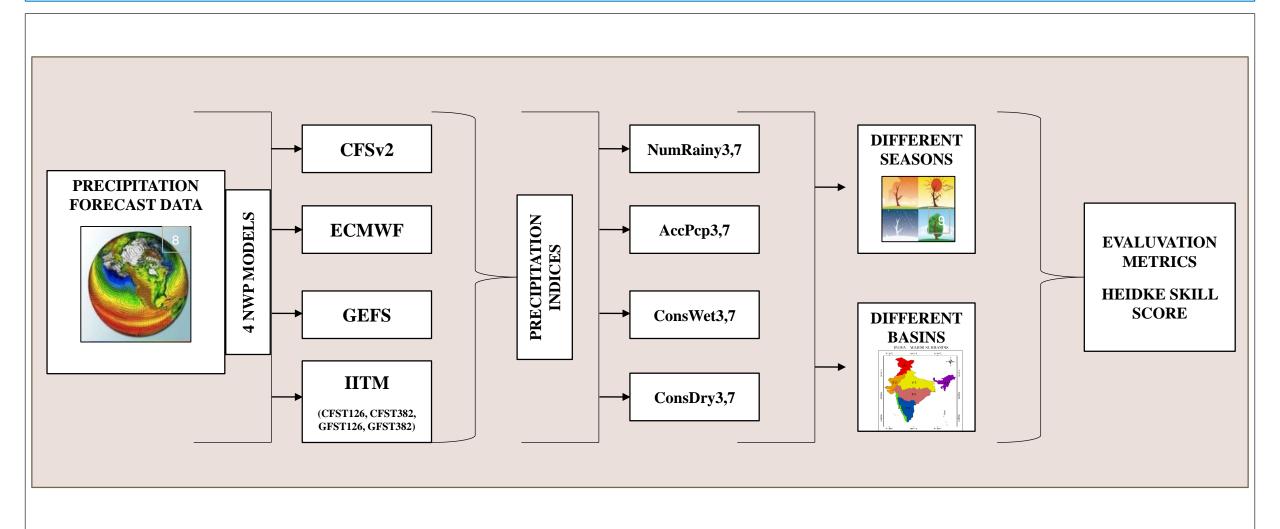
DATA USED

Data used in the study		
Verification/ Observation Data		
India Meteorological Department	IMD	
Forecast Data		
Climate Forecast System version 2	CFSv2	
European Centre for Medium Range Weather Forecasts	ECMWF	
Global Ensemble Forecast System	GEFS	
Indian Institute of Tropical Meteorology (CFST126, CFST382, GFST126, GFST382)	IITM	

- Spatial resolution: $1^{\circ} \times 1^{\circ}$; Temporal resolution: 2003 2018;
- Lead days: 1 to 7 lead days (short to medium range)

PRECIPITATION INDEX

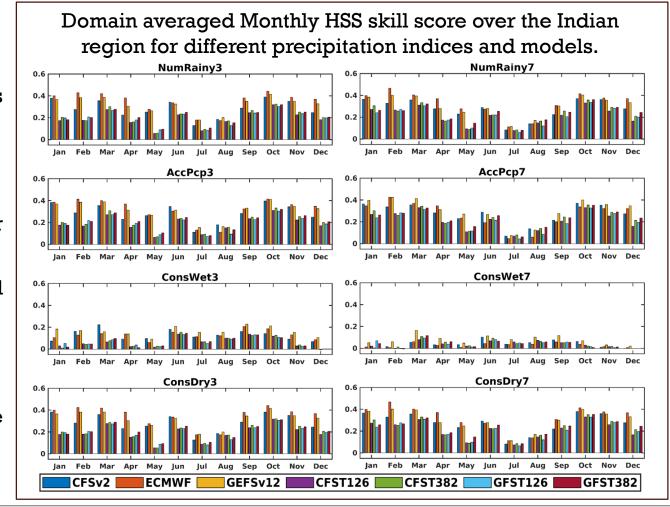
• Indices used to assess the models:


Precipitation Index	Description of Index	Abbreviation used
Number of Rainy Days	number of days Pcp > 1mm in three lead days	NumRainy3
	number of days Pcp > 1mm in seven lead days	NumRainy7
Accumulated Precipitation	accumulated Pcp for three leads > 1mm	АссРср3
	accumulated Pcp for seven leads > 1mm	AccPcp7
Consecutive Wet Days	Pcp > 1mm for consecutive three days	ConsWet3
	Pcp > 1mm for consecutive seven days	ConsWet7
Consecutive Dry Days	Pcp < 1mm for consecutive three days	ConsDry3
	Pcp < 1mm for consecutive seven days	ConsDry7

- Evaluation Metrics: "Heidke Skill Score (HSS)"
 - Range: -∞ to 1; Perfect Score: 1

26 May 2022

EXPERIMENTAL SETUP

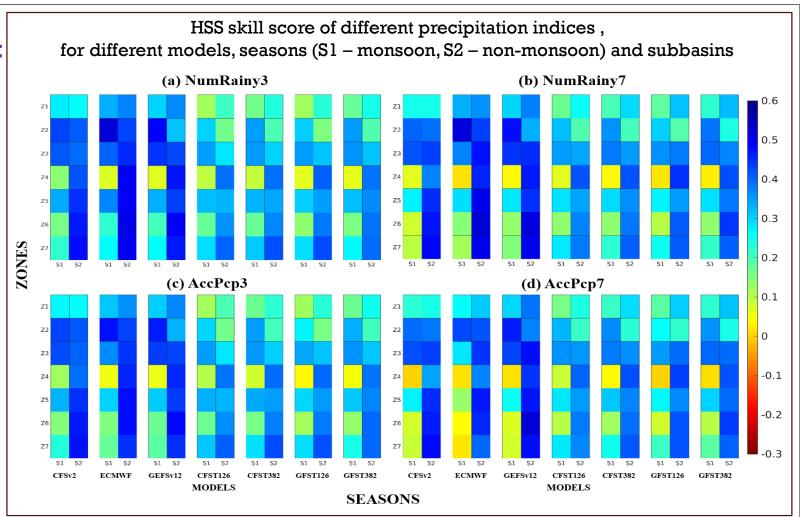


Models - monthly analysis:

The GEFSv12, CFSv2, ECMWF forecasts precipitation correctly.

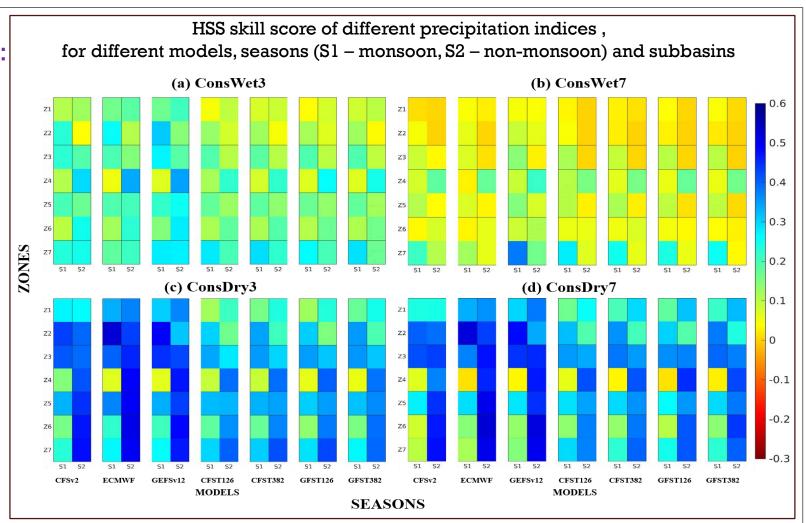
Satisfactory performance of models for number of rainy days and accumulated precipitation.

>Model's performance good for consecutive dry days than wet days.



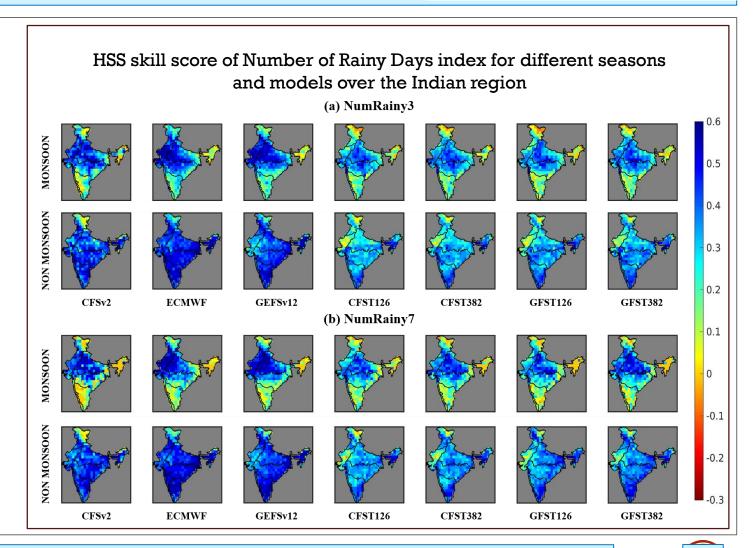
26 May 2022

Models -seasonal & basin analysis:


>Models showed better a performance in the non-monsoon season than monsoon.

Models -seasonal & basin analysis:

- Models performance good for consecutive dry days than wet days.
- >Models showed better a performance in the non-monsoon season than monsoon.



Models spatial representation

- season and basin analysis:

The evaluation of models and indices spatially over different basins in India showed that the performance was good in the central region (i.e., Narmada and Tapti basin).

CONCLUSION

- The GEFSv12, CFSv2, ECMWF forecasts precipitation correctly in comparison to IITM datasets.
- No significant changes in forecast seen for different model and versions of IITM dataset.
- The assessment of models and indices for monsoon and non-monsoon season showed better performance in the non-monsoon season.
- The evaluation of models and indices spatially over different basins in India showed that the performance was good in the central region (i.e., Narmada and Tapti basin).
- Models performance was good for the consecutive dry days than consecutive wet days.
- Models are able to capture the number of rainy days and accumulated precipitation satisfactorily.

REFERENCES

- Sillmann, J., Kharin, V.V., Zwiers, F.W., Zhang, X., Bronaugh, D., 2013b. Climate extremes indices in the CMIP5 multimodel ensemble: Part 2. Future climate projections: CMIP5 PROJECTIONS OF EXTREMES INDICES. Journal of Geophysical Research: Atmospheres 118, 2473–2493. https://doi.org/10.1002/jgrd.50188
- Tian, D., Wood, E.F., Yuan, X., 2017. CFSv2-based sub-seasonal precipitation and temperature forecast skill over the contiguous United States. Hydrology and Earth System Sciences 21, 1477–1490. https://doi.org/10.5194/hess-21-1477-2017
- Zhang, X., Alexander, L., Hegerl, G.C., Jones, P., Tank, A.K., Peterson, T.C., Trewin, B., Zwiers, F.W., 2011. Indices for monitoring changes in extremes based on daily temperature and precipitation data. WIREs Clim Change 2, 851–870. https://doi.org/10.1002/wcc.147

ACKNOWLEDGEMENT

DATA PROVIDERS:

- INDIAN INSTITUTE OF TROPICAL METEROLOGY (IITM)
 (Dr. ATUL KUMAR SAHAI, Mr. RAJU MANDAL)
- INDIA METEOROLOGICAL DEPARTMENT (IMD)
- NOAA
- ECMWF

SOURCE:

- 1. https://www.relexsolutions.com/resources/measuring-forecast-accuracy/
- 2. https://steemit.com/watersupply/@samsonike/water-supply-and-its-types
- 3. https://www.shutterstock.com/search/agriculture
- 4. https://www.feednavigator.com/Article/2018/06/01/Drought-leads-Argentina-to-buy-US-soybeans
- 5. https://www.water-technology.net/features/feature-ten-largest-dams-in-the-world-reservoirs/
- 6. https://www.drought.gov/drought/news/new-soil-moisture-research-results
- 7. https://pixels.com/featured/flowing-stream-in-vermont-randall-nyhof.html
- 8. https://blogs.egu.eu/divisions/cl/author/davenport/
- 9. https://www.ecmwf.int/en/about/media-centre/focus/2017/fact-sheet-ensemble-weather-forecasting

THANK YOU ALL

