The impact of precise inter-satellite ranges on relative precise orbit determination in a smart formation flying or constellation of CubeSats

Amir Allahvirdi-Zadeh and Ahmed El-Mowafy

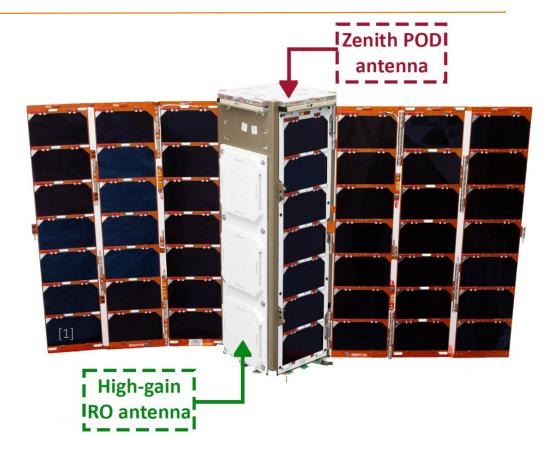
GNSS-SPAN GROUP,

SCHOOL OF EARTH AND PLANETARY SCIENCES, CURTIN UNIVERSITY, PERTH, AUSTRALIA

- Background
- Problem statement
- Proposed solution
- Results
- Summary and conclusion

CubeSats

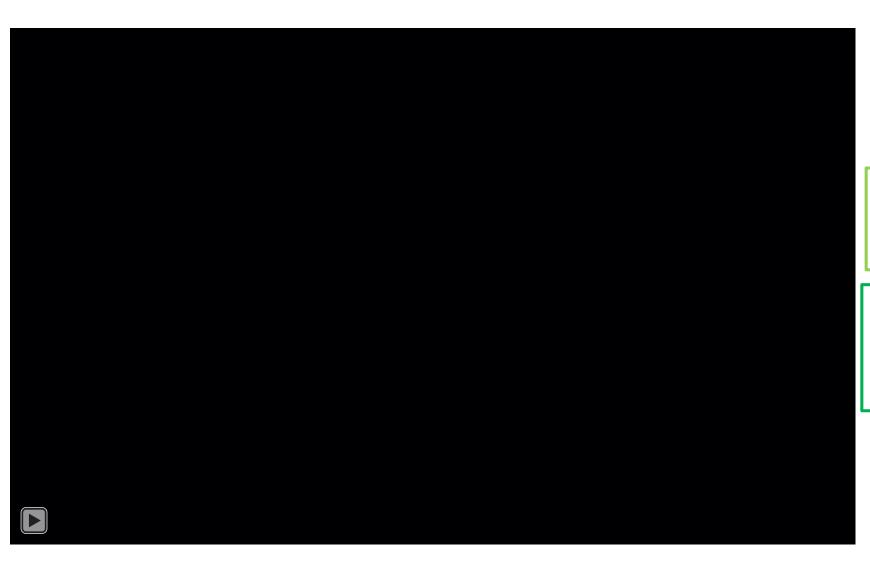
CubeSat's general specifications:


- Small (1U: $10 \times 10 \times 10$ cm), can be multiple of units
- Low-cost (20K ~ 200K USD)
- Low-power (5-20 Watts)

CubeSats applicability:

- Space exploration oxdiv I
- Earth science missions
- Communication ✓

Increasing the applicability?

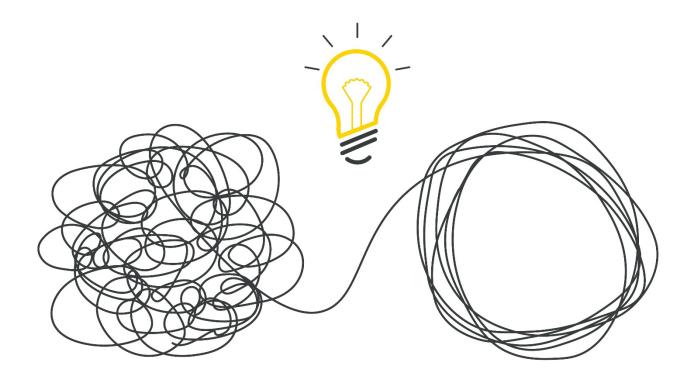

☑ Launching them in a formation flying or constellation

Example: Spire Global Constellation:

- >145 3U-CubeSats;
- Used for GNSS Radio Occultation

Precise Orbit Determination (POD) of CubeSats

Augmenting PNT applications?!


POD of CubeSat is essential for different applications!

CubeSat's POD in post-mission has been developed and reached acceptable accuracy [2][3].

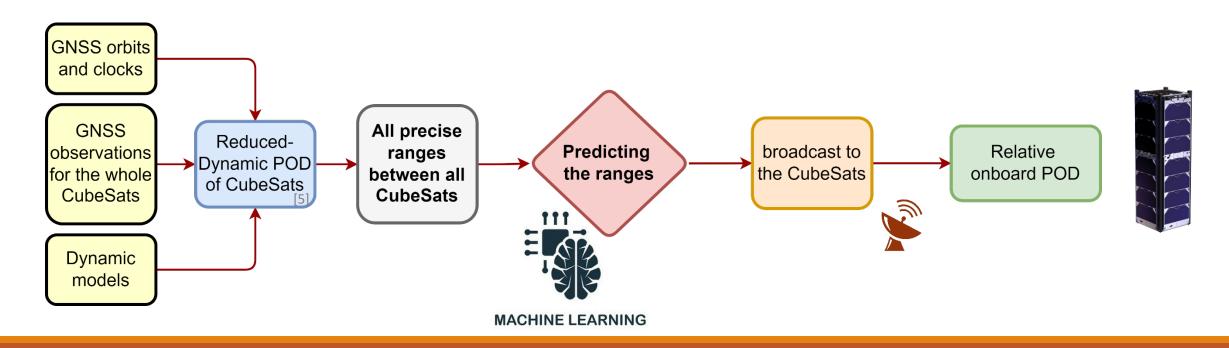
The availability of precise corrections for GNSS orbits and clocks in space through , e.g., AU-SBAS and QZSS is a big step in real-time POD [4].

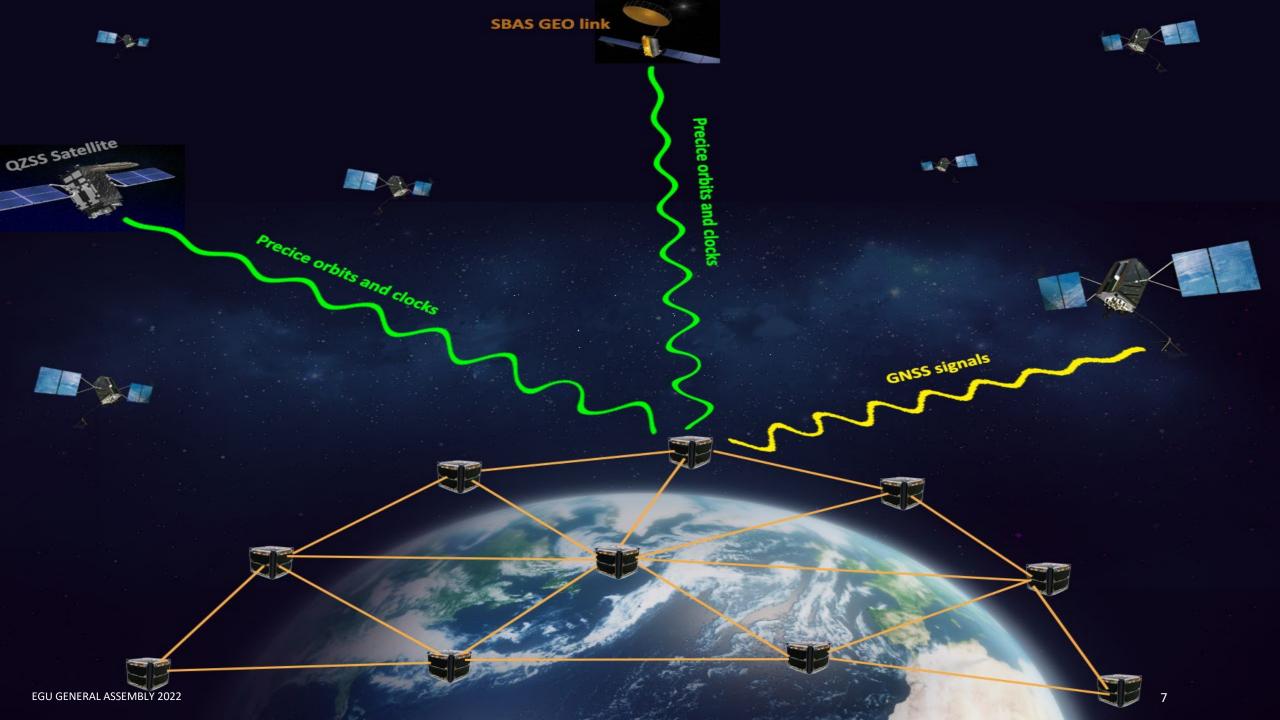
The required accuracy of the realtime POD for most applications are (theoretically) achievable with CubeSats!

- Background
- Problem statement
- Proposed solution
- Results
- Summary and Conclusion

Problem

Proposed solution




In reality, Real-Time POD for CubeSats is still an issue due to:

- Limited power and CPU,
- Low-cost onboard receiver and patch antenna,
- Unstable oscillators, etc.

Augmenting the relative POD with the precise inter-satellite ranges

- Meet the power and computational expectations
- Reduced the impact of the receiver-dependant errors
- Remove the CubeSats clock errors
- Strengthen the model

Reduced-Dynamic POD processing models and parameters

Item	Description		
	Gravity field: EGM 2008		
Dunamia madala	Tidal corrections: Updated FES2004		
Dynamic models	Relativity: IERS 2010		
	Planets ephemeris: JPL DE405		
	Dual-frequency GPS Ionosphere-Free (1 Hz)		
	A-priori code and phase standard deviation 0.1 m, 1 mm		
Observation model	CubeSat and GNSS attitude information: applied [6-8]		
Observation model	PCO and PCV for GNSS satellites: igs14.atx		
	PCO and PCV for CubeSats: applied [9]		
	GNSS orbits and clocks: CODE final products		
Stochastic accelerations	Velocity changes (pulses) at certain epochs		
	Piecewise constant accelerations		

Model and solution for the augmented relative POD

$$\begin{split} \Delta P_{r_{12}}^{s_{12}} &= \rho_{r_{12}}^{s_{12}} + e_{r_{12}}^{s_{12}} \\ \Delta \Phi_{r_{1}r_{2}}^{s_{1}s_{2}} &= \rho_{r_{12}}^{s_{12}} + \lambda \, n_{r_{12}}^{s_{12}} + \epsilon_{r_{12}}^{s_{12}} \end{split}$$

$$A = \begin{bmatrix} -LOS_{r12}^{S_{12}} & 0 & 0 & \cdots & 0 & 0 \\ \vdots & \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\ -LOS_{r12}^{S_{1u}} & 0 & 0 & \cdots & 0 & 0 \\ -LOS_{r12}^{S_{12}} & 1 & 0 & \cdots & 0 & 0 \\ \vdots & \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\ -LOS_{r12}^{S_{1u}} & 1 & 0 & \cdots & 1 & 0 \\ \hline \frac{b}{PR} & 0 & 0 & \cdots & 0 & 0 \end{bmatrix}$$

Implementing the Precise Ranges (PR)

u: # of common-in-view GPS satellites

For current study, the ionosphere delays are removed using ionospheric-free linear combination

Solving using Least-Squares filtering

- Background
- Problem statement
- Proposed solution
- Results
- Summary and Conclusion

Testing properties

CubeSats: 9 CubeSats from the Spire Global

Constellation:

COSPAR	CubeSat's ID
2019-018G	ID099
2019-018H	ID100
2019-018J	ID101
2019-018K	ID102
2019-0385	ID103
2019-038L	ID104
2019-038Z	ID106
2019-038T	ID107
2020-061AX	ID122

Date:

• 5 Jan 2021

Software to process RD-POD part:

 Bernese v 5.2 (modified to add the SNR weighting function for CubeSats POD [3])

Software to process relative POD part

 leoPod Software (developed by GNSS-SPAN, Curtin University, Australia)

CPU to simulate onboard processing:

Raspberry Pi 4

Results 1

Comparing the estimated coordinates of the deputy CubeSat with its reference orbits that are generated in the ground station from RD-POD:

Orbital	RMSE (m)								
Parameters	ID099	ID100	ID101	ID102	ID103	ID104	ID106	ID107	ID122
Х	0.47	0.48	0.61	0.45	0.38	0.56	0.51	0.49	0.57
Υ	0.49	0.43	0.55	0.56	0.38	0.54	0.52	0.40	0.56
Z	0.52	0.56	0.52	0.55	0.45	0.59	0.48	0.56	0.53

b < 1000 km

→ Several centimetres accuracy

b > 2000 km

→ ~1 meter accuracy

b > 7000 km

→ No common-in-view satellites

Results 2

 Comparing the results of two scenarios for CubeSat ID122: <u>applying</u> and <u>not applying</u> the precise ranges in the model:

Orbital parameters	Mean values of the improvement (m)	
X	0.33	
Y	0.28	
Z	0.16	

•	Applying the	inter-sa	tellite ranges	improved	the
	performance	of the	least-squares	filtering	and
	decreased the	conver	gence time.		

Essential for CubeSat's processors

Processing time for each epoch is less than 1 s

Specifications	Tested CPU	CubeSat's CPU	
Processor	Quad-core ARM Cortex (A72)	Dual-core ARM Cortex	
RAM	8G DDR4	8 GB DDR3	
Power consumption	3.8-5.5 W	1.6 to 2.85 W	

Note: leoPod software is developed for research, and not for testing the computational speed, so the processing time can be less for real-world missions

Requirements for the proposed solution

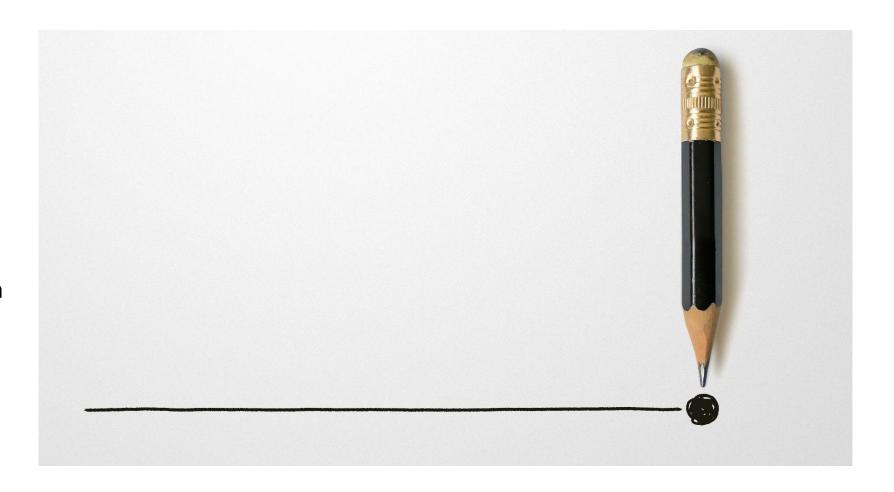
Observations of the chief CubeSat

Software-defined radio (SDR) [10]

- Receiving signals
- Transmitting signals,
- Aiding to process

Predicted ranges

Better oscillators


Chip-scale atomic clocks [11]

- Background
- Problem statement
- Proposed solution
- Results and discussion
- Summary and Conclusion

Summary and Conclusion

- Real-Time POD is an essential for augmenting PNT applications using the formation flying or constellation of CubeSats
- There are some limitations for CubeSats for real-Time POD including power and CPU, low-cost receivers and antenna, unstable oscillators, etc.
- The proposed solution is to augment relative POD using the precise inter-satellite ranges,
- Mimicking the onboard situation, several cm accuracy for baselines less than 1000 km and dm accuracy for longer baselines is achievable
- Prediction using Machine Learning algorithms, inter-CubeSat communication using SDRs, and better oscillators are required to implement the proposed solution in a smart constellation,
- More investigations are performed to reach the higher accuracy required for PNT applications.

This presentation participates in OSPP

Outstanding Student & PhD candidate Presentation contest

More Questions? Let's discuss:

Amir.Allahvirdizadeh@curtin.edu.au

References

- [1] Allahvirdi-Zadeh, A., Awange, J., El-Mowafy, A., Ding, T., & Wang, K. (2022). Stability of CubeSat Clocks and Their Impacts on GNSS Radio Occultation. Remote Sensing, 14(2), 362. https://doi.org/10.3390/rs14020362
- [2] Wang, K., Allahvirdi-Zadeh, A., El-Mowafy, A., & Gross, J.N. (2020). A Sensitivity Study of POD Using Dual-Frequency GPS for CubeSats Data Limitation and Resources. *Remote Sensing*, 12(13):2107. https://doi.org/10.3390/rs12132107
- [3] Allahvirdi-Zadeh, A., & El-Mowafy, A. (2021). Precise Orbit Determination of CubeSats Using a Proposed Observations Weighting Model. In, *Scientific Assembly of the International Association of Geodesy (IAG)*. Beijing, China. http://dx.doi.org/10.13140/RG.2.2.20619.62244
- [4] Allahvirdi-Zadeh, A., Wang, K., & El-Mowafy, A. (2021). POD of small LEO satellites based on precise real-time MADOCA and SBAS-aided PPP corrections. *GPS solutions, 25*, 31. https://doi.org/10.1007/s10291-020-01078-8
- [5] Allahvirdi-Zadeh, A., Wang, K., & El-Mowafy, A. (2022). Precise Orbit Determination of LEO Satellites Based on Undifferenced GNSS Observations. *Journal of surveying engineering*, 148, 03121001. https://doi.org/10.1061/(ASCE)SU.1943-5428.0000382
- [6] Allahverdi-Zadeh, A., Asgari, J., & Amiri-Simkooei, A. R. (2016). Investigation of GPS draconitic year effect on GPS time series of eliminated eclipsing GPS satellite data. Journal of Geodetic Science, 6(1). https://doi.org/10.1515/jogs-2016-0007
- [7] Allahverdi-Zadeh, A. (2013). Evaluation of the GPS Observable Effects Located in the Earth Shadow on Permanent Station Position Time Series. MSc thesis, Geomatics Engineering Department, University of Isfahan. https://doi.org/10.13140/RG.2.2.28151.32167
- [8] Allahvirdi-Zadeh, Amir (2022): Shadow toolbox. figshare. Software. https://doi.org/10.6084/m9.figshare.19085546.v1
- [9] Allahvirdizadeh, A. (2021). Phase centre variation of the GNSS antenna onboard the CubeSats and its impact on precise orbit determination. In GSA Earth Sciences Students Symposium-WA (GESSS-WA). https://doi.org/10.13140/RG.2.2.10355.45607/1
- [10] Allahvirdi-Zadeh, A. (2021). Software Defined Radio (SDR) as a GNSS receiver in future CubeSats. Internship with Binar Space Program Innovation Central Perth, Curtin University, Western Australia. https://doi.org/10.13140/RG.2.2.28290.20166
- [11] Conklin, J., et al., (2014). The CHOMPTT Precision Time Transfer CubeSat Mission. Spring CubeSat Developers' Workshop, Cal Poly, USA. http://mstl.atl.calpoly.edu/~workshop/archive/2014/Spring/Day%202/Speaker17 Conklin.pdf