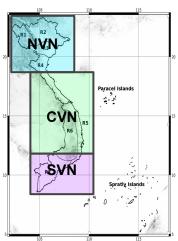


Hong-Hanh LE¹, Nicholas HALL¹ and Thanh Ngo-Duc²

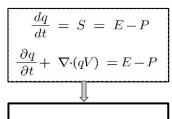
(1) LEGOS, University of Toulouse III, France
(2) LOTUS, University of Science and Technology of Hanoi, Vietnam

1 Introduction


By OBSERVATION analysis:

Remote influence on Intraseasonal Variation (ISV) of rainfall over Vietnam subregions:

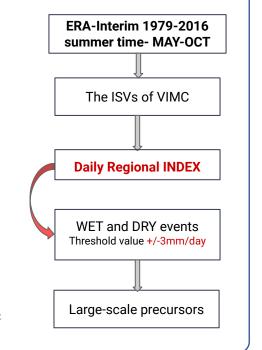
- Tropical factors: the MJO, Equatorial Rossby waves, Kelvin waves ...
- Extratropical factors and their interactions


Remains:

- asymmetrics of large-scale precursors between opposite events
- pathways of influences by modelling study

Vietnam map and selected domains: North, Central and South of Vietnam - NVN,CVN and SVN, respectively.

2.1 Methods - Precursor Composites


TIMC - VIMC = E - P

$$VIMC = -\int_{P_s}^{P_0} \nabla(V, q) dp$$

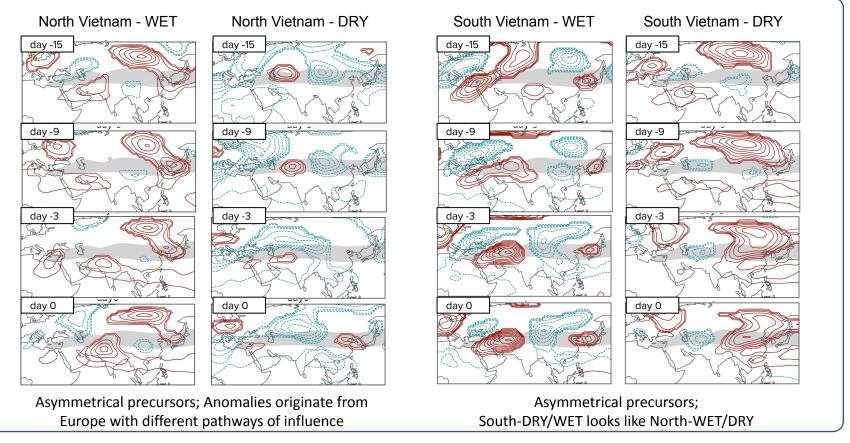
$$TIMC = \frac{\partial}{\partial t} \left(\int_{P_s}^{P_0} q dp \right)$$

TIMC = Tendency of Integrated Moisture Column

VIMC = Vertically integrated Moisture Flux Convergence

Hong-Hanh LE¹, Nicholas HALL¹ and Thanh Ngo-Duc²

(1) LEGOS, University of Toulouse III, France (2) LOTUS, University of Science and Technology of Hanoi, Vietnam

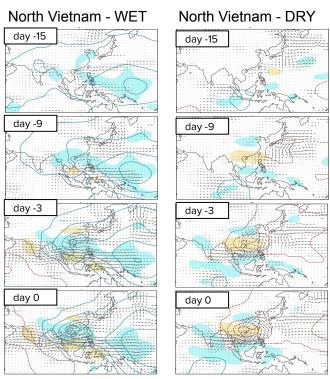


- IC 4m

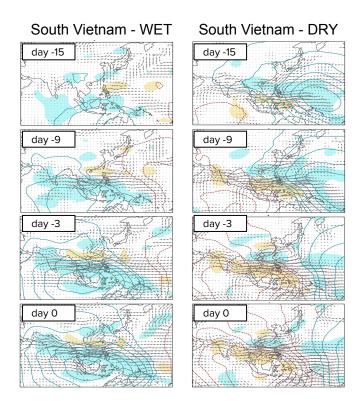
250m -

Geopotential height at

WET and DRY Composites



(1) LEGOS, University of Toulouse III, France (2) LOTUS, University of Science and Technology of Hanoi, Vietnam



WET and DRY Composites

Velocity potential at 850m - IC 2e5 m2/s

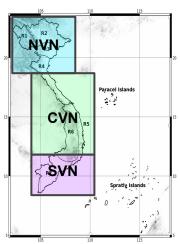
Convergence/Divergence area develops locally and asymmetrically

Observed tropical wave activities and its asymmetry

Hong-Hanh LE¹, Nicholas HALL¹ and Thanh Ngo-Duc²

(1) LEGOS, University of Toulouse III, France
(2) LOTUS, University of Science and Technology of Hanoi, Vietnam

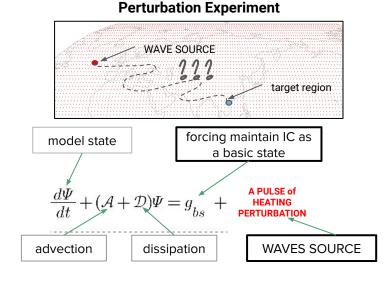
1 Introduction


By OBSERVATION analysis:

Remote influence on Intraseasonal Variation (ISV) of rainfall over Vietnam subregions:

- Tropical factors: the MJO, Equatorial Rossby waves, Kelvin waves ...
- Extratropical factors and their interactions

Remains:


- asymmetrics of large-scale precursors between opposite events
- pathways of influences by modelling study

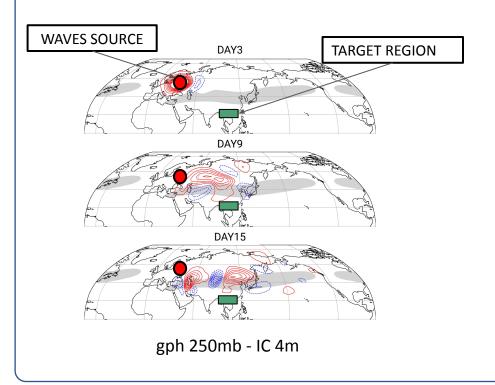
Vietnam map and selected domains: North, Central and South of Vietnam - NVN,CVN and SVN, respectively.

2.2 Methods - Stationary Wave Model

Wiethous - Stationary wave would

The BASIC STATE: summer climatology ERA-Interim 1979-2016

INFLUENCE FUNCTION MAP (see later)

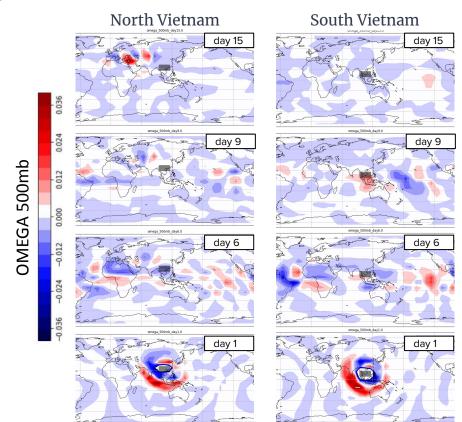

Hong-Hanh LE¹, Nicholas HALL¹ and Thanh Ngo-Duc²

(1) LEGOS, University of Toulouse III, France (2) LOTUS, University of Science and Technology of Hanoi, Vietnam

Stationary Wave Model - Perturbation experiments

Example of a SINGLE experiments

- Plot the the CHANGE of INFLUENCE over TARGET region on PLACE OF WAVE SOURCE versus model running time
- DO a set of perturbation experiments all around the world
- ⇒ INFLUENCE FUNCTION MAP


2 Target regions: North and South Vietnam

Hong-Hanh LE¹, Nicholas HALL¹ and Thanh Ngo-Duc²

(1) LEGOS, University of Toulouse III, France (2) LOTUS, University of Science and Technology of Hanoi, Vietnam

Stationary Wave Model - Perturbation experiments

Vertical velocity over target region - 500mb

- North Vietnam: Heating sources over Europe take about 12 days to reach, then reinforce influence.
- South Vietnam: No heating outside Tropics gives significant influence; Kelvin waves in Tropics (day1-day9).

Hong-Hanh LE¹, Nicholas HALL¹ and Thanh Ngo-Duc²
(1) LEGOS, University of Toulouse III, France
(2) LOTUS, University of Science and Technology of Hanoi, Vietnam

4 Conclusion:

OBSERVATION: Rainfall extremes of opposing signs show:

- asymmetrical large scale precursors
- different pathways of influence from Extratropics
- strong tropical wave activity for South Vietnam

MODELLING: Two different pathways influence divergence flow over VN:

- North Vietnam: extratropical sources over Europe
- South Vietnam: tropical wave sources

Hong-Hanh LE¹, Nicholas HALL¹ and Thanh Ngo-Duc²
(1) LEGOS, University of Toulouse III, France
(2) LOTUS, University of Science and Technology of Hanoi, Vietnam

4 Conclusion:

OBSERVATION: Rainfall extremes of opposing signs show:

- asymmetrical large scale precursors
- different pathways of influence from Extratropics
- strong tropical wave activity for South Vietnam

MODELLING: Two different pathways influence divergence flow over VN:

- North Vietnam: extratropical sources over Europe
- South Vietnam: tropical wave sources

Hong-Hanh LE PhD student LEGOS/Universite Paul Sabatier, France

Thanh NGO-DUC
Ass.Professor at LOTUS/USTH,
Vietnam

Nick HALL
Professor at LEGOS/Universite
Paul Sabatier, France