How Significant are the Longwave Radiative Effects of the Cloud-Aerosol Transition Zone?

EGU22-2298 | 24. 05. 2022 | 11:05 - 11:12

B. Jahani¹², H. Andersen¹², J. Calbó³, J.A. González³, J. Cermak¹²

- ¹ Karlsruhe Institute of Technology, Institute of Meteorology and Climate Research (KIT-IMK), Germany.
- ² Karlsruhe Institute of Technology, Institute of Photogrammetry and Remote Sensing (KIT-IPF), Germany.
- ³ Departament de Física, Universitat de Girona (UdG), Spain.

Email: babak.jahani@kit.edu

The "transition (twilight) zone"

Special conditions in the region between the cloudy and so-called cloud-free skies.

Characteristics of the suspension lay between those corresponding to the adjacent clouds and the surrounding aerosols.

These conditions consist of:

- A mixture of liquid droplets and ice crystals
- Humidified to dry aerosols

and involves various processes such as:

- Cloud dissipation/formation
- Aerosol hydration/dehydration
- Shearing of cloud fragments
- Clouds becoming undetectable
- Other

*Schwarz et al. (2017). Mapping the Twilight Zone—What We Are Missing between Clouds and Aerosols. Remote Sensing: 9(6):577

Variable	clear-sky	Transition zone
AOD	0	Any
COD	0	Any
Land Fraction	0%	0%
Lost Fraction	< 10%	≥ 90%
Difficult Fraction	< 10%	-
Solar Zenith angle	≤ 60°	≤ 60 °
Viewing Zenith angle at surface	≤ 60°	≤ 60 °
Total number of MODIS pixels	≥ 300	≥ 300

EGU General 2022

Radiative effects

Accuracy at 95% confidence level: ± 3.7 W/m2

- The transition zone occurs over vast areas.
- The broadband longwave radiative effect was on average equal to 8.0 W/m2 (heating effect; median: 5.4 W/m2).
- Cases with radiative effects as large as 50 W/m2 were observed.

EGU General 2022

dT = ERA5 near surface Temp. – Suspension top Temp.

dT ~ Altitude

- The radiative effects correspond to the transition zone conditions occurring at various altitudes.
- Low-level transition zone conditions (defined as those with suspension top height below 2 km) on average produced a radiative effect of about 4.6 W/m2.
- The lowest layers (temperature difference less than 4 K) produced on average a radiative effect of 0.8 W/m2.

Thank you!

Project NUBESOL-2: PID2019-105901RB-I00

MINISTERIO DE CIENCIA E INNOVACIÓN

FI-AGAUR PhD grant: 2018FI_B_00830

Atmos. Chem. Phys., 22, 1483–1494, 2022 https://doi.org/10.5194/acp-22-1483-2022 © Author(s) 2022. This work is distributed under the Creative Commons Attribution 4.0 License.

Longwave radiative effect of the cloud–aerosol transition zone based on CERES observations

Babak Jahani¹, Hendrik Andersen^{2,3}, Josep Calbó¹, Josep-Abel González¹, and Jan Cermak^{2,3}

Correspondence: Babak Jahani (babak.jahani@udg.edu)

Received: 20 May 2021 – Discussion started: 7 June 2021 Revised: 22 November 2021 – Accepted: 23 December 2021 – Published: 31 January 2022