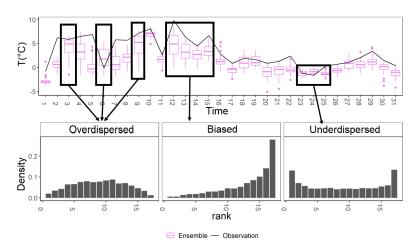
Gaussian mixture models for clustering and calibration of ensemble weather forecasts

Jouan Gabriel ¹ Cuzol Anne ² Monbet Valérie ³ Monnier Goulven ⁴

 $^{f 1}$ University of Rennes / Scalian DS

²University of Bretagne Sud

³University of Rennes


⁴Scalian DS

24 mai 2022

Introduction

- Different error types identified;
- Extension of the Nonhomogeneous Gaussian Regression (NGR) with a revisited Gaussian Mixture Model (GMM) applied to ensemble data.

NGR-Z: a two steps calibration model

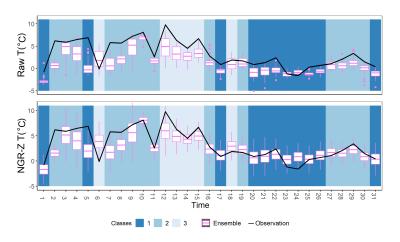
First step : Cluster ensemble data into K weather regimes.

Three strategies proposed:

- "Empirical statistics";
 - ▶ GMM is fitted on a vector $S_i = (\overline{x}_i, s_i^2)$ of empirical statistics derived from the ensemble X_i^* at the time i.
- Super sample";
 - Classical GMM applied on each ensemble members defined as i.i.d element from the dataset.
- "Exchangeable variables";
 - ▶ GMM defined on (X_1, \dots, X_M) , a vector of exchangeable gaussian random variables.

NGR-Z: a two steps calibration model

First step : Cluster ensemble data into K weather regimes.


Three strategies proposed:

- "Empirical statistics";
 - ▶ GMM is fitted on a vector $S_i = (\overline{x}_i, s_i^2)$ of empirical statistics derived from the ensemble X_i^* at the time i.
- Super sample ;
 - Classical GMM applied on each ensemble members defined as i.i.d element from the dataset.
- "Exchangeable variables";
 - ▶ GMM defined on (X_1, \dots, X_M) , a vector of exchangeable gaussian random variables.

Second step: Fit an *NGR* on each $k \in \{1, \dots, K\}$ regime.

Conclusion

- Biase reduced for $t \in \{12, 13, 14, 15\}$;
- Dispersion improved for $t \in \{23, 24, 25\}$.

 $\underline{\text{Work published into "Discrete and}} \text{ Continuous Dynamical Systems - Series S"}^{\,1}.$

1. https://www.aimsciences.org/article/doi/10.3934/dcdss.2022037?viewType=html#b31 < 🗆 > < 🗇 > < 💆 > < 🖹 > < 💆 > < 🦠 < 🗟

Conclusion

Thank you for your attention.

contact: gabriel.jouan@scalian.com