

Automated river-level monitoring through river camera images and deep learning

Rémy Vandaele, Varun Ojha, Sarah L. Dance

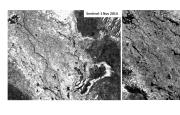
Current river monitoring solutions

River gauges

Pro: Steady water-level data stream Con: Lacks flexibility (cost, location)

Hard to observe a flood event at an ungauged location

SAR images



Pro: Flexible solution

Con: At best, \sim 1 image every few days

Can miss the rising limb of a flood and flash flood events

Our solution

River cameras

Steady image stream: *CCTV live* cameras

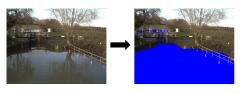
Flexible solution: $\it cheap \& \it easy to$

install and maintain

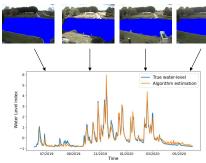
How to transform the images into quantitative data?

Proposition 1

Part 1. Water segmentation. Extraction of the water pixels from the images.

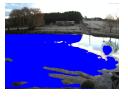


Part 2. Transformation of the water segmentation into river level data.



Proposition 1, part 1. Water segmentation Challenge

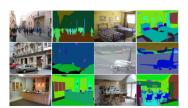
Typical deep learning networks offer unsatisfying results for water segmentation



- Problems with water reflection, shadows, weather,...
- Segmentation networks trained from scratch
 - ▶ Small water segmentations datasets (± 200 images)

Proposition 1, part 1. Water segmentation Method

Our idea: use transfer learning to harness the predictive power of segmentation networks trained on large databases of natural images



ADE20k samples

COCO-stuff samples

Proposition 1, part 1. Water segmentation

Results

	Accuracy (%)		
	(1)	(2)	
SotA	90.2	97.5	
Our method	96.9	99.5	

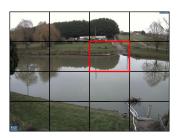
(1) 75 water-segmented images dataset from Lopez-Fuentez et al., 2017
(2) 39 water-segmented images dataset from Steccanella et al., 2018

Vandaele, R., Dance, S. L., & Ojha, V. (2020). Automated water segmentation and river level detection on camera images using transfer learning. DAGM Conference.

Part 2. Extraction of river level data

Methods

1. SOFI index: % of water pixels in a 2. LBWLE index: height of the region of the image. highest landmark reached by water



Proposition 1, part 2. Extraction of river level data SOFL index results

Test set. 4 Farson Digital cameras captured between 01/06/2019 and 31/05/2020, annotated with gauge data:

Camera name	# images	Distance to	
		gauge station (m)	
Diglis Lock	3081	94	
Evesham Lock	3012	120	
Strensham Lock	3067	820	
Tewkesbury Marina	3147	1112	

Performance criterion. Pearson Correlation Coefficient ρ :

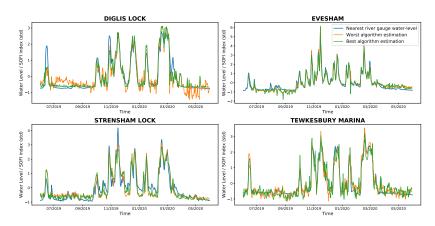
$$\rho = \frac{\sum_{i}^{N} (w_{i} - \bar{w})(g_{i} - \bar{g})}{\sqrt{\sum_{i}^{N} (w_{i} - \bar{w})^{2}} \sqrt{\sum_{i}^{N} (g_{i} - \bar{g})^{2}}}$$
(1)

 w_i is the gauge water level, g_i the estimated water level.

Proposition 1, part 2. Extraction of river level data

SOFI index results

	Diglis	Evesham	Strensham	Tewkesbury
	Lock	Lock	Lock	Marina
ρ_{Best} network	0.94	0.98	0.94	0.97



Part 2. Extraction of river level data

LBWLE index results

Test set. 4 Farson Digital cameras captured during a 2-week flood event in 2012.

Location	#images	# landmarks	% flooded
			landmarks
Diglis Lock	141	7	24.11
Evesham Lock	134	13	30.94
Strensham Lock	144	24	37.15
Tewkesbury Marina	138	4	43.66

Performance criterion. Balanced Accuracy (landmark classification):

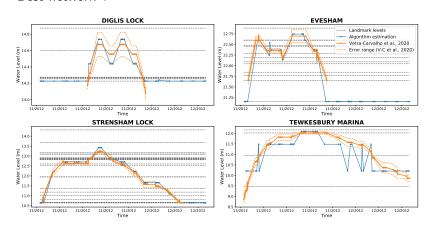
$$BA = 0.5 \times \frac{A}{A+D} + 0.5 \times \frac{B}{B+C}$$
 (2)

A is the number of true positives, B of false positives, C of false negatives and D of true negatives.

Proposition 1, part 2. Extraction of river level data

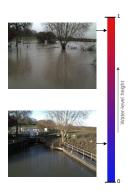
SOFI index results

	Diglis	Evesham	Strensham	Tewkesbury
	Lock	Lock	Lock	Marina
BABest network	0.95	0.97	0.91	0.95

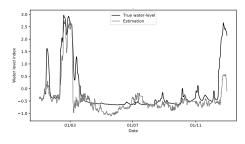


Proposition 2. Image regression

1. Creation of a large dataset of 32,715 images annotated with river levels



2. Training of a deep regression network on this dataset to estimate the calibrated river level



Vandaele et al., 2022. Environmental Data Sciences (submitted)

Proposition 2. Image regression

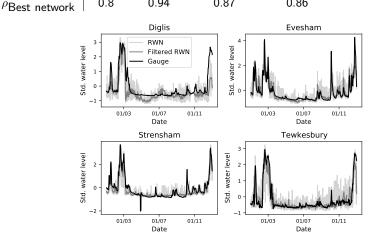
Creation of the dataset

- 1. Matching of a camera with a river gauge
 - Closest gauge to the camera
 - Camera removed when the closest gauge > 50km
 - Manual inspection of the matching quality
 - Started with 163 cameras from Farson Digital and 10.000+ gauges from EA, OPW, NRW and SEPA.
- 2. Matching of an image with a gauge measurement
 - The matching was made according to their timestamp
 - The closest measurement within 30mins from the image timestamp was selected
- 3. Final dataset
 - 95 cameras, 32,715 images
 - Test dataset and performance criterion similar to Slide 9

Proposition 2. Image regression

Results

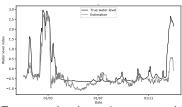
Diglis	Evesham	Strensham	Tewkesbury
Lock	Lock	Lock	Marina
0.8	0.94	0.87	0.86



... but independent from the field of view of the camera!

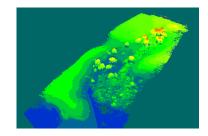
Future steps

1. Improve the accuracy of the image regression network



- Robust-to-noise training
- Use additional information (segmentation, temporality)
- 2. Extract absolute river water-levels (in meters above sea-level)

- Integrate LiDAR DSM data
- Image registration, heterogeneous networks,...



Property of the Balling City

Automated river-level monitoring through river camera images and deep learning

Rémy Vandaele, Varun Ojha, Sarah L. Dance

