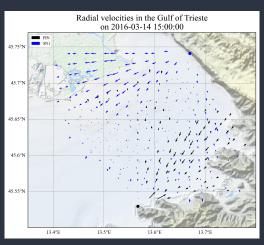
Interpolation of high-frequency radar velocities

EGU 2022 General Assembly Oceanography at coastal scales. Modelling, coupling, observations and applications

> Charles Troupin, Alexander Barth, Marco Alba and Antonio Novellino

> > GHER - ULiège


23–27 May, 2022


What do we do?

Generate gridded velocity fields using radial velocities from high-frequency radar systems

What do we do?

Generate gridded velocity fields using radial velocities from high-frequency radar systems

Why?

- Gaps present in original fields
- Several applications requiring filled fields
- Many methods available...

How do we do that?

DIVAnd = Data-Interpolating Variational Analysis in n dimensions

How do we do that?

Minimisation of a cost function taking into account

- Observations
- Regularity of the field

How do we do that?

Additional constraints, specific to HF radar:

divergence: weak divergence of the flow

boundary conditions: normal velocity component pprox 0

Coriolis force: velocity at a given time is similar to the velocity before/after

DIVAnd_HFRadar.jl

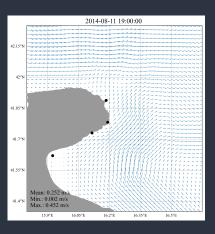
The package DIVAnd_HFRadar interpolates surface current data on a regular grid possibly taking dynamical contraints into account. The primary use-case is for radial current measurements for high-frequency radars (like WERA or CODAR SeaSonde). But it can also be applied to any other current data (like ADCPs or drifters).

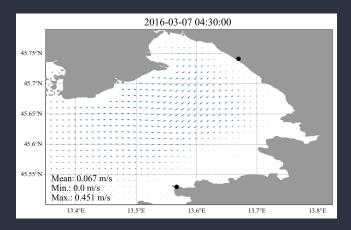
The method is described in: Barth, A., Troupin, C., Reyes, E., Alvera-Azcárate, A., Beckers J.-M. and Tintoré J. (2021): Variational interpolation of high-frequency radar surface currents using DIVAnd. Ocean Dynamics, 71, 293–308 doi: 10.1007/s10236-020-01432-x (open access, bibtex)

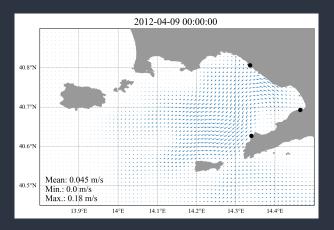
Fields generated in 4 regions:

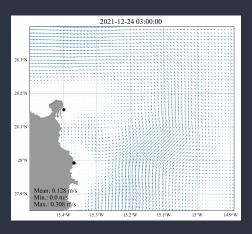
- 1. Gulf of Manfredonia (Adriatic coast of Italy),
- Gulf of Trieste (north of the Adriatic Sea),
- Gulf of Naples (south-western coast of Italy) and
- 4. Northeast Gran Canaria island (Atlantic Ocean).

Format: netCDF

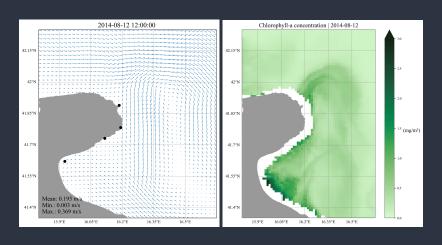

Metadata: Climate and Forecast (CF) conventions

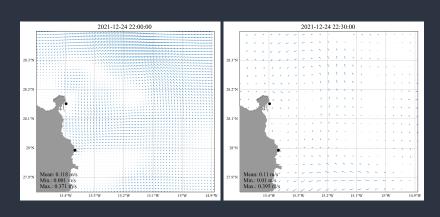

+ recommendation of the EuroGOOS HFR Task Team


Resolution

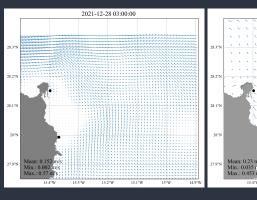

Region	Spatial resolution	Temporal resolution
Naples	$0.01^{\circ} \times 0.01^{\circ}$	1 hour
Canary	$0.01^{\circ} \times 0.01^{\circ}$	1 hour
Trieste	$0.01^{\circ} \times 0.01^{\circ}$	30 minutes
Manfredonia	$0.02^{\circ} \times 0.02^{\circ}$	1 hour

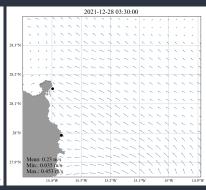
Distribution: through EMODnet Physics




Difficult to find in situ measurements \rightarrow external datasets

- Velocity from model (CMEMS product no. IBI_ANALYSISFORECAST_PHY_005_001) for Gran Canaria.


HF radar vs. chlorophyll concentration



HF radar vs. CMEMS IBI model

HF radar vs. CMEMS IBI model

Credits

Cast

Data access
Code developer
Application design

Alexander Barth Charles Troupin

Validation and parameter optimisation

Basile Caterina, Quentin Renouvel and Hugo Romanelli

Code

DIVAnd.jl

- https://github.com/gher-ulg/Divand.jl
- DIVAnd_HFRadar.jl EMODnet Physics HF Radar
- https://github.com/gher-ulg/DIVAnd_HFRadar.jlhttps://gitlab.uliege.be/gher/diva-emodnetphysics

Marco Alba, Antonio Novellino

Publications

Barth et al. (2021), Ocean Dynamics
Report

- 10.1007/s10236-020-01432-x
- 10.5281/zenodo.5811989

Funding

Projects

EMODnet Physics, SeaDataCloud

Computing (CECI HPC)

F.R.S.-FNRS & the Walloon Region