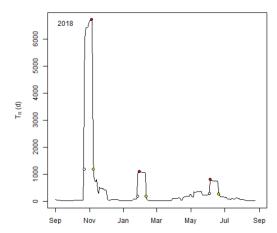


Vienna, Austria & Online | 23-27 May 2022

Methodologies for the characterisation of spatially distributed hydrological events: the Italian case study

Alessandro Borre, Alberto Viglione, Simone Gabellani, Tatiana Ghizzoni

Data and Methods



REGIONAL RP METHOD

Q -> Exceeding Empirical Frequencies -> RP



Empirical Regional Return Period

$$T_r(i,j) = \frac{1}{n} \sum_{j=1}^n g(j) * winodw(t_r(i,j), w)$$

Low pass filter

CIMA

MIT (Minimum Inter-event Time)

Annual maxima best fit

Daily return period for each station & Gaussian filter

Classification Parameter: Sum of each local return period

Data and Methods

Event	Regions	Date	Source	Damage
Soverato 2000	Calabria	10/09/00	polaris	13 casualities. Triggering of various landslides.
Vibo Valentia 2006	Calabria	03/07/06	polaris	3 casualities. Presence of many debris.
Debris flow Villar Pellice	Piemonte	28/05/08	polaris	Debris flow that has swept the villages and the roads.
Flood Event Italia 2008	Sardegna, Piemonte, Campania, Calabria, Veneto, Sicilia	10/10/08	reports	Flooding all over Italy, landslides and closed roads.
General bad weather in the Nord-Est and Center of Italy	Toscana,Friuli, Veneto	07/07/09	polaris + reports	Flooding of streams and canals, resulting in closures of several roads.

HISTORIC FLOOD DATABASE

Reports from Italian Civil Protection Department
+
CNR & IRPI Databases

Observed Data

- 145 hydrometeorological active sections
- Unevenly spatial distribution

Modelled Data

- 457 sections generated by hydrological model (CONTINUUM)
- Homogeneous spatial distribution

2005-2019

Results

Date	Regional RP Method	CIMA	Historic	TOT (1-3)
07/11/12	1	1	1	3
21/01/13	1	1	0	2
17/05/13	1	1	1	3
16/11/13	1	1	1	3
01/12/13	1	1	1	3
05/01/14	0	1	1	2
03/05/14	1	1	1	3
12/11/14	1	1	1	3
30/01/15	1	1	0	2

LOGIC TABLE

Logic table of macro-events selected from methods

Method consistency

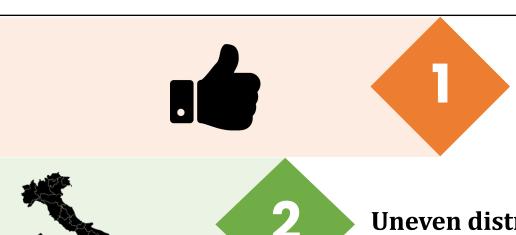
Method consistency

% of all events	Observed	Modelled
3	45	42.5
3 No CIMA	2.5	0
3 No Regional RP Method	0	0
no data	10	10
/	42.5	47.5

% of first 22 events	Observed	Modelled
3	68.2	63.6
3 No CIMA	4.5	0.0
3 No Regional RP Method	0.0	0.0
no data	4.5	4.5
/	22.7	31.8

Both methods show similar results

Critical and large events are **selected**



Discussion and Conclusions

More than 60% consistency between historical data and model outputs

Uneven distribution of events in Italy

Mobile space window with integration of radar and satellite data

Climate change and future trends

THANK YOU

alessandro.borre@cimafoundation.org