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Abstract

• The numerical approach for solving the fixed gravimetric boundary value problem
with an oblique derivative (FGBVP) based on the finite element method (FEM)
with mapped infinite elements is presented.

• In this approach, the 3D semi-infinite domain outside the Earth is bounded by the
triangular approximation of the Earth’s surface and extends to infinity.

• As a numerical method, the FEM with finite and mapped infinite triangular prisms -
pentahedral elements has been derived and implemented.

• The key idea of this FEM approach is based on a division of the computational
domain into two centrical parts, where the lower one is meshed with several layers
of finite elements and the upper one with one layer of infinite elements.

• The global gravity field modelling using EGM2008 data is performed and discussed.
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Formulation of the FGBVP

• Let us consider the FGBVP:

∆T (x) = 0, x ∈ Ω, (1)

∇T (x) · s(x) = −δg(x), x ∈ S , (2)

T (x) → 0, as |x| → ∞, (3)

where Ω is defined as R3 − S , S is the Earth, T (x) is the disturbing potential
defined as a difference between the real and normal gravity potential at any point
x = (x , y , z), δg(x) is the gravity disturbance, and the vector
s(x) = −∇U(x)/|∇U(x)| is the unit vector normal to the equipotential surface of
the normal potential U(x) at any point x.
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Formulation of the FGBVPs
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Solution of the GBVP by the FEM with MIE

• In our approach, we follow the fundamental principles of FEM published in 1.

• We have obtained the weak formulation (1) - (3)∫
Ωe

∇T · ∇w dxdydz +
c2

c1

∫
Γe

∂T

∂t1
w dσ +

c3

c1

∫
Γe

∂T

∂t2
w dσ =

=

∫
Γe

−δg
c1

w dσ +

∫
∂Ωe\Γe

∇T · nw dσ. (4)

1J.N. Reddy, An Introduction to the Finite Element Method, 3rd Edition, McGraw-Hill Education,
New York, ISBN: 9780072466850 (2006)
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Solution of the GBVP by the FEM with MIE

a) b)

Figure 1: Types of elements used in our computations: a) The finite pentahedral elements with
six nodes and b) mapped infinite pentahedral elements with nine nodes. Isoparametric
coordinates are within intervals 0 ≤ ξ ≤ 1, 0 ≤ η ≤ 1 and −1 ≤ ζ ≤ 1.

6 of 18



Solution of the GBVP by the FEM with MIE

• For a finite pentahedral element Ωe with six nodes, see Fig. 1 a), we can write

T ≈ T e =
6∑

j=1

T e
j ψj(x , y , z), (5)

i. e. we take an approximation of the unknown value T as T e , a linear combination
of basis functions ψj with coefficients T e

j , j = 1, ..., 6. Then we substitute it into
the weak formulation (4), namely for elements Ωe with indexes k = 1, ..., n1,
l = 1, ..., n2 and m = 2, ..., n3 − 1, and consider ψi for weight function w . We
obtain the i th equation in the form

6∑
j=1

T e
j

∫
Ωe

∂ψj

∂x

∂ψi

∂x
+
∂ψj

∂y

∂ψi

∂y
+
∂ψj

∂z

∂ψi

∂z
dxdydz =

6∑
j=1

∫
∂Ωe

qn ψi dxdy , (6)

where qn = ∇T · n denotes the projection of the vector ∇T along unit normal n.
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Solution of the GBVP by the FEM with MIE

• For the row of elements Ωe we obtain the i th equation in the form

6∑
j=1

T e
j

 ∫
Ωe

∂ψj

∂x

∂ψi

∂x
+
∂ψj

∂y

∂ψi

∂y
+
∂ψj

∂z

∂ψi

∂z
dxdydz

 +

+
3∑

j=1

T e
j

 c2

c1

∫
Γe

∂ψj

∂t1
ψi dxdy +

c3

c1

∫
Γe

∂ψj

∂t2
ψi dxdy

 =

=
3∑

j=1

∫
Γe

−δgj
c1

ψi dxdy +
6∑

j=1

∫
∂Ωe\Γe

qn ψi dxdy , (7)

where index j = 1, ..., 3 refers to nodes of the element Ωe that lie on the bottom
boundary Γ of the computational domain Ω.
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Solution of the GBVP by the FEM with MIE

• Finally, for the mapped infinite pentahedral element Ωe with nine nodes we can
write

T ≈ T e =
9∑

j=1

T e
j ψj(x , y , z). (8)

We substitute it for elements Ωe with indexes k = 1, ..., n1, l = 1, ..., n2 and
m = n3 into the weak formulation (4), consider ψi for weight function w and we
obtain the i th equation in the form

9∑
j=1

T e
j

∫
Ωe

∂ψj

∂x

∂ψi

∂x
+
∂ψj

∂y

∂ψi

∂y
+
∂ψj

∂z

∂ψi

∂z
dxdydz =

9∑
j=1

∫
∂Ωe

qn ψi dxdy , (9)

where qn = ∇T · n denotes the projection of the vector ∇T along the unit normal
n.

9 of 18



Solution of the GBVP by the FEM with MIE

• The process of mesh generation is then performed in several steps.

Figure 2: Piecewise affine mapping of rectangle (meshed with n = 4) onto regular octahedron.
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Solution of the GBVP by the FEM with MIE

• In our numerical computations we used meshes with n = 2l , where l is the level of
refinement of the mesh. Examples of two coarse meshes (level l = 2, 4).

Figure 3: Quad and triangular meshes for levels l = 2 and l = 4.
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Testing numerical experiments

• In the first testing experiment, the bottom boundary has been at level 6 371 [km],
the height of the finite domain ΩFE has been 500 [km], so the finite/infinite element
interface has been at level 6 871 [km]. Then the center of the infinite elements has
been at level 13 742 [km]. We have started with the mesh made up of 64× 16× 4
nodes and then we performed four successive refinements.

No. of nodes Min Max Mean Median STD EOC

64x16x4 -0.5678 0.2036 -0.1057 -0.1239 0.1690 -

128x32x8 -0.1705 0.0460 -0.0282 -0.0317 0.0434 1.9597

256x64x16 -0.0490 0.0109 -0.0072 -0.0079 0.0112 1.9533

512x128x32 -0.0138 0.0027 -0.0018 -0.0019 0.0028 2.0134

1024x256x64 -0.0038 0.0007 -0.0005 -0.0005 0.0007 2.0076

Table 1: Statistics of residuals [m2s−2] on the bottom boundary S .

12 of 18



Testing numerical experiments

• For the second testing experiment we have chosen mesh consisting of 256× 64× 16
nodes from Testing experiment 1 and we have fixed the size of elements while
redoubling the radius of the finite domain. It means that with a doubling of the
height of the finite domain, the number of elements redoubled as well to remain the
size of elements.

Height of ΩFE [km] No. of nodes Min Max Mean Median STD

500 256x64x16 -0.0490 0.0109 -0.0072 -0.0078 0.0112

1000 256x64x32 -0.0487 0.0109 -0.0072 -0.0078 0.0111

2000 256x64x64 -0.0486 0.0108 -0.0072 -0.0079 0.0111

4000 256x64x128 -0.0485 0.0107 -0.0072 -0.0079 0.0110

8000 256x64x256 -0.0485 0.0106 -0.0072 -0.0079 0.0110

Table 2: Statistics of residuals [m2s−2] on the bottom boundary S .
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Global gravity field modelling

• The bottom boundary S has been the Earth’s surface discretized by the series of
triangles. The radial size of ΩFE has been 5 000 [km], so infinite elements started
approximately at radius 11 371 [km] and their center has been approximately at
22 742 [km]. Input surface gravity disturbances as BC (2) have been generated from
Earth Gravitational Model 2008 (EGM2008).

No. of nodes Hmin Min Max Mean Median STD

256x64x64 20000 -427.982 318.320 -24.785 -20.839 39.153

512x128x128 10000 -192.035 183.795 -9.951 -8.507 15.343

1024x256x256 5000 -77.456 82.134 -5.284 -4.930 5.200

2048x512x512 2500 -35.309 24.675 -1.358 -1.357 1.894

Table 3: Experiment with gravity data: Statistics of residuals [m2s−2] on the bottom
boundary S .
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Global gravity field modelling

•

Figure 4: Quad and triangular meshes for levels l = 2 and l = 4.
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Global gravity field modelling

•

Figure 5: Quad and triangular meshes for levels l = 2 and l = 4.
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Global gravity field modelling

•

Figure 6: Quad and triangular meshes for levels l = 2 and l = 4.
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Conclusions

• We have presented an numerical approach for solving the fixed gravimetric
boundary value problem with an oblique derivative (FGBVP) based on the finite
element method (FEM) with mapped infinite elements.

• Reconstruction of EGM2008 as a harmonic function has shown that with a
sufficient refinement of the discretization we are able to achieve high accuracy, even
on such extremely complicated Earth’s surface.
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