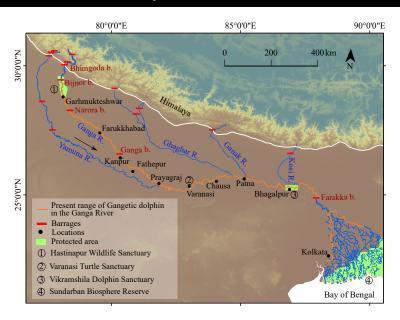
#EGU22-256

Assessing the habitat suitability of the Ganga River under anthropogenic influence

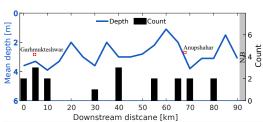
Gaurav Kailash Sonkar, Kumar Gaurav

Department of Earth and Environmental Sciences Indian Institute of Science Education and Research, Bhopal, India

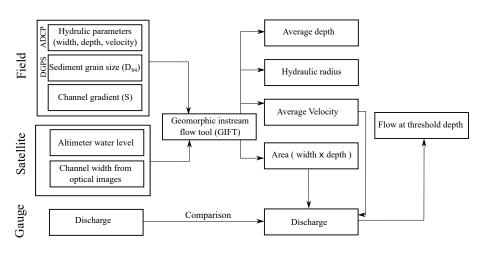

Presenting author: Gaurav Kailash Sonkar, PhD Student

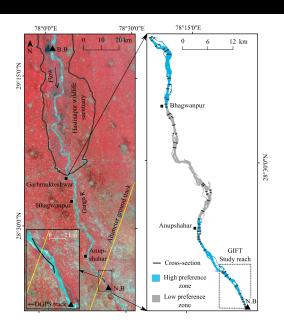
May 22, 2022

OSPP presentation



Motivation of the study


Depth influence on distribution



River	Minimum depth [m]	Period of measurement	Reference Paudel etal., 2021	
Karnali/Nepal	2 - 3.5	December to May		
Gandak	2.2 - 5	January	Chaudhory 2012	
Ganga	3 - 9	January to June	Joshi 2008	
Brahmaputra	4.1 - 6	February to April	Wakid 2009	

Method of hydraulic habitat estimation

Study site

Channel hydraulics

Reach.	Mean depth [m]	Maximum depth [m]	Mean velocity [m/s]	Width [m]	Discharge [m³/s]
		Pre-monsoon			
Garhmukteshwar	1.6	3.07	0.6	276	281
	±0.3	±1.32	±0.0	±70	±92
Anupshahar	1.6	3.25	0.6	245	264
	±0.3	±0.96	±0.11	±82	±93
Narora	2.0	4.60	0.5	294	294
	±0.8	±2.89	±0.19	±116	±54
		Monsoon			
Garhmukteshwar	2.1	5.1	1	489	1107
	±0.3	±0.5	±0.13	±98	±174
Bhagwanpur	2.5	6.0	1	527	1143
	±1.0	±2.0	±0.28	±112	±181
Anupshahar	2.7	6.1	1	506	1398
	±0.3	±0.8	±0.14	±140	±135
Narora	2.8	6.4	1	459	1388
	±0.5	±2.7	±0.13	±127	±140

Hydraulic habitat simulation

RIVER RESEARCH AND APPLICATIONS

River Res. Applic. 32: 399-410 (2016)

Published online 23 October 2014 in Wiley Online Library (wileyonlinelibrary.com) DOI: 10.1002/rra.2851

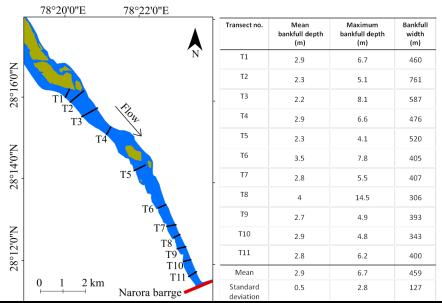
AT-A-STATION HYDRAULIC GEOMETRY SIMULATOR

DANIEL MCPARLAND^{a*}, BRETT EATON^a AND JORDAN ROSENFELD^b

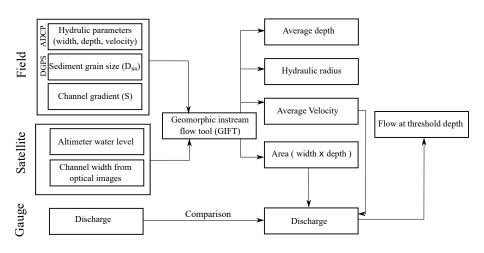
Department of Geography, University of British Columbia, Vancouver, British Columbia, Canada
Ministry of Environment, Province of British Columbia, Vancouver, British Columbia, Canada

Received: 20 February 2021 Revised: 26 July 2021 Accepted: 27 July 2021

DOI: 10.1002/rra.3847

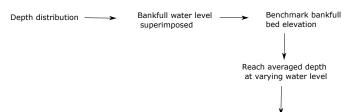

RESEARCH ARTICLE

WILEY

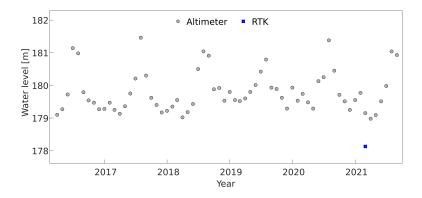

Evaluation of a geomorphic instream flow tool for conducting hydraulic-habitat modelling

Stefan Gronsdahl¹ O | Dan McParland¹ | Brett Eaton² | R. Dan Moore² | Jordan Rosenfeld³ O

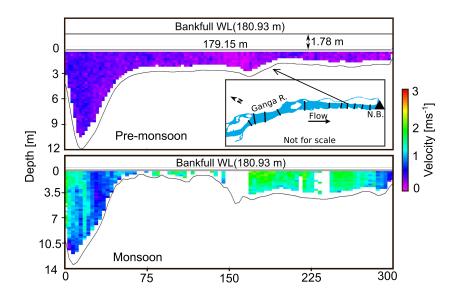
GIFT Study reach



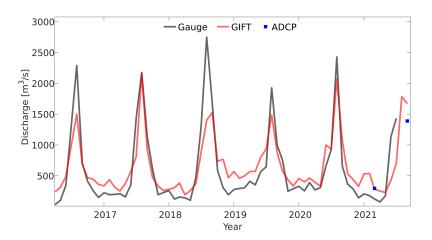
Method of hydraulic habitat estimation

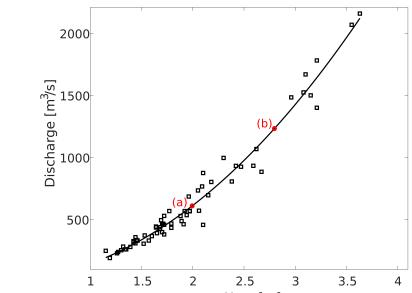

Hydraulic simulation

GIFT Work flow



- Calculating Hydraulic radius (R): $R = W_b \times d_b / P$
 - Where W_b is the bankfull width and d_b is the calculated depth at different water level
- Calculating Mean velocity (v_{mean}): $V=R^{(2/3)} \times S^{(1/2)} / n$
 - where n is manning's coefficient for sand bed (0.017) and S is the channel gradient (m/m)
- Calculating the associated discharge (Q): $Q = v_{mean} \times W \times d_{mean}$
 - Where W is the width which is the bankfull constant width or satellite derived width for each timestep.


Satellite Altimeter water surface elevation


Water level variation

Rating curve

Rating curve

Conclusion

The optimal mean depth of 2 m is available in the monsoon season throughout the high and low preferred zones of GRD habitat, while in the premonsoon, the optimal mean depth is present only in the reach upstream of Narora barrage. The mean maximum in the pre-monsoon may provide intermittent longitudinal connectivity.

Altimetry WL superimposed on a cross-section reflects the temporal change of 1.7 m in WL is also observed in the cross-section bathymetry it is superimposed on. This suggests that the altimetry dataset can predict water surface elevation change of river cross-sections with relative ease.

Conclusion

The study assumes a fixed channel configuration; therefore 614~m3/s of discharge is required to maintain the optimal depth of 2 m. The requisite mean discharge and depth is are attained at WL of >179.8~m. The mean simulated hydraulics of the pre-monsoon and monsoon suggest that the altimetry dataset are a good precursor to check habitat suitability under varying flow conditions where data is scarce.

GIFT's ability is limited by the input measurements and the assumption of fixed channel configuration. Additionally, this study's findings are site-specific but can be in predicting a first-order estimate of reach averaged hydraulic habitat quality.