Alfvénicity of Velocity and Magnetic Field Increments Observed by Parker Solar Probe

EGU General Assembly, May 26, 2022

Panisara Thepthong¹, Peera Pongkitiwanichakul¹, David Ruffolo², Riddhi Bandyopadhyay³ and William H. Matthaeus⁴

¹Department of Physics, Faculty of Science, Kasetsart University, Bangkok 10900, Thailand ²Department of Physics, Faculty of Science, Mahidol University, Bangkok 10400, Thailand

³Department of Astrophysical Sciences, Princeton University, Princeton, NJ 08544, USA

⁴Bartol Research Institute and Department of Physics and Astronomy, University of Delaware, Newark, DE 19716, USA

 Alfvénicity is the correlation of velocity fluctuations and magnetic fluctuations

$$v = \pm b$$

where magnetic fluctuation \boldsymbol{b} is measured in Alfvén speed units

Introduction

 We want to study the physics of Alfvénicity and how Alfvénicity depends on other variables using data from Parker Solar Probe (PSP) when the solar wind was super-Alfvenic or sub-Alfvenic.

Magnetic and velocity fluctuations are defined as follows with τ as a time increment

$$\Delta \boldsymbol{v} = \boldsymbol{v}(t+\tau) - \boldsymbol{v}(t)$$

$$\Delta \boldsymbol{b} = \boldsymbol{b}(t+\tau) - \boldsymbol{b}(t)$$

Alfvénicity increments

Measures to quantify Alfvénicity (Parashar et al. 2020)

$$\sigma_c = \frac{2\langle \Delta \boldsymbol{v} \cdot \Delta \boldsymbol{b} \rangle}{\langle |\Delta \boldsymbol{v}|^2 \rangle + \langle |\Delta \boldsymbol{b}|^2 \rangle}$$

• Normalized cross helicity (σ_c) • Normalized residual energy (σ_r)

$$\sigma_r = \frac{\langle |\Delta \boldsymbol{v}|^2 \rangle - \langle |\Delta \boldsymbol{b}|^2 \rangle}{\langle |\Delta \boldsymbol{v}|^2 \rangle + \langle |\Delta \boldsymbol{b}|^2 \rangle}$$

• Alfvén ratio (r_A)

$$r_A = \frac{\langle |\Delta \boldsymbol{v}|^2 \rangle}{\langle |\Delta \boldsymbol{b}|^2 \rangle}$$

 Cosine of the alignment angle between v and b ($\cos \theta_{vh}$)

$$\cos \theta_{vb} = \frac{\langle \Delta \boldsymbol{v} \cdot \Delta \boldsymbol{b} \rangle}{\sqrt{\langle |\Delta \boldsymbol{v}|^2 \rangle + \langle |\Delta \boldsymbol{b}|^2 \rangle}}$$

Frequency in Fourier spectra

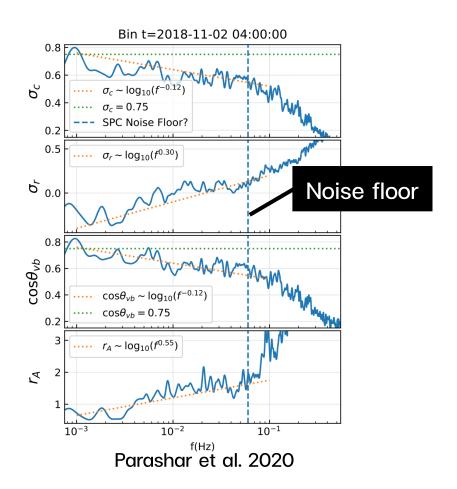
To match the frequency that contributes the most to Δb or Δv , we assume that b and v have Kolmogorov spectra and assume the continuous equation for b (or v)

$$\boldsymbol{b}(t) = \int \boldsymbol{b}(\omega)e^{i\omega(t)}d\omega$$

Let
$$\Delta \boldsymbol{b} = \boldsymbol{b}(t+\tau) - \boldsymbol{b}(t)$$
 and

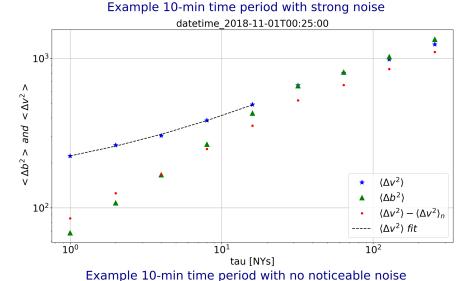
$$G(\omega_0) = \frac{8\pi}{T} \int_0^{\omega_0} \mathbf{b}(\omega) \mathbf{b}(-\omega) (1 - e^{-i\omega\tau}) d\omega$$
 for very large T

$$\langle \Delta \boldsymbol{b}^2 \rangle = G(\infty)$$

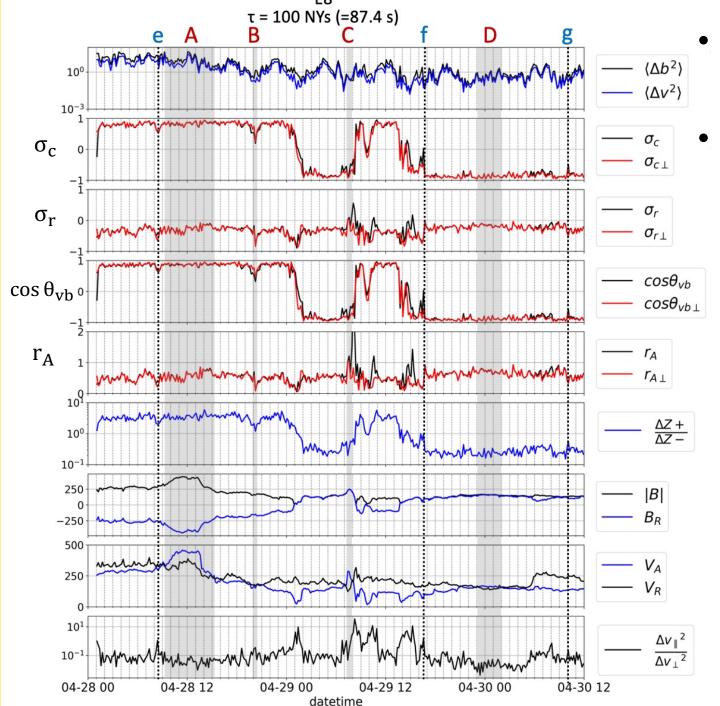

Consider the contribution to $\langle \Delta b^2 \rangle$ per logarithm of ω :

$$\frac{dG}{d\ln\omega} = \omega \frac{dG}{d\omega} \propto G(2\omega_0) - G(\omega_0/2) \sim \boldsymbol{b}(\omega)\boldsymbol{b}(-\omega)(1 - e^{-i\omega\tau})\omega$$

This contribution is maximized for

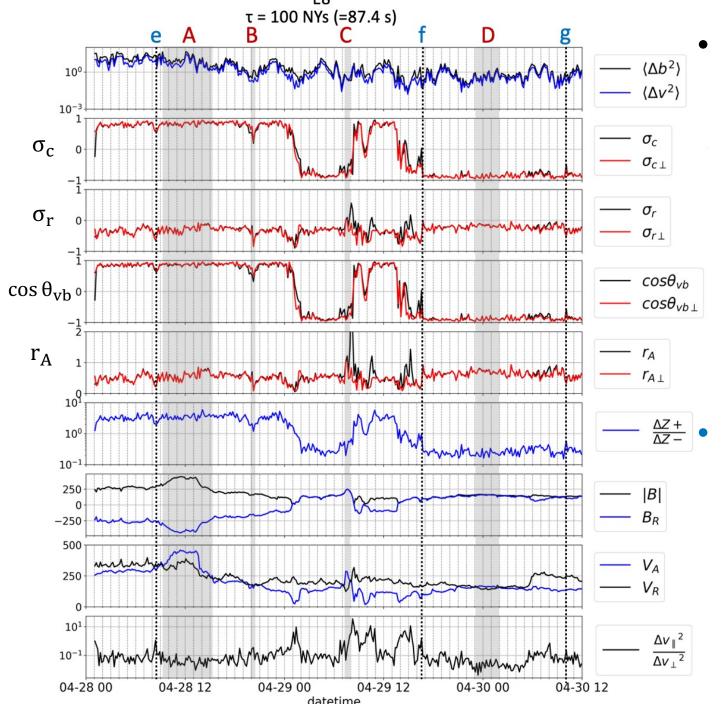

$$\omega \approx \frac{2.65}{\tau}$$

Noise subtraction



In previous work, we can observe noise at high frequencies. Without the noise, we can estimate Alfvénicity at small scales or high frequencies.

• We can eliminate the noise by assuming that the power spectrum of the $\langle |\Delta v|^2 \rangle$ is power-law in the inertial range without noise.



Time dependence of Alfvénicity near 8th perihelion (10-min averages)

- Regions A, B, C and
 D are sub-Alfvenic.
- Regions A and D have typical high Alfvénicity for $\tau \sim 14.7 - 87.4 \text{ s}$ but the region B has low Alfvénicity with low velocity fluctuation as the spacecraft possibly passes a twisted magnetic field inside a flux rope.

Time
dependence
of
Alfvénicity
near 8th
perihelion
(10-min averages)

Region C has "ideal Alfvénicity " with $r_A \approx 1$ and $\sigma_r \approx 0$ for balanced magnetic and velocity fluctuations for $\tau \sim 14.7 - 87.4$ s, unlike typical solar wind.

e, f and g observed sudden drop of Alfvénicity at the high ratio of parallel to perpendicular velocity increments.

7