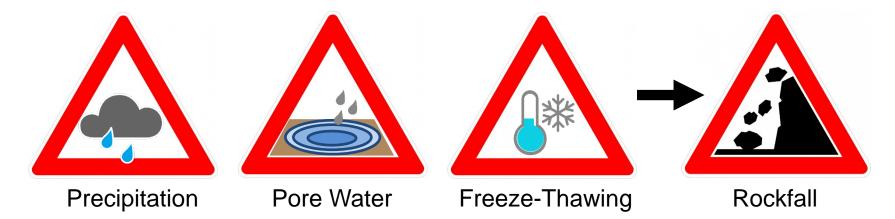
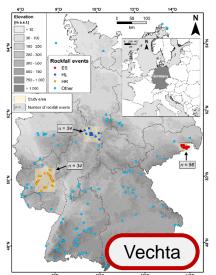


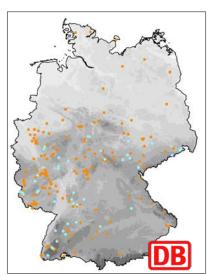
A decrease in rockfall probability associated with changing meteorological conditions in Germany

Katrin Nissen¹, Uwe Ulbrich¹, Bodo Damm²

- 1: Institute of Meteorology, Freie Universität Berlin
- 2: Institute for Applied Physical Geography, Universität Vechta


GEFÖRDERT VOM

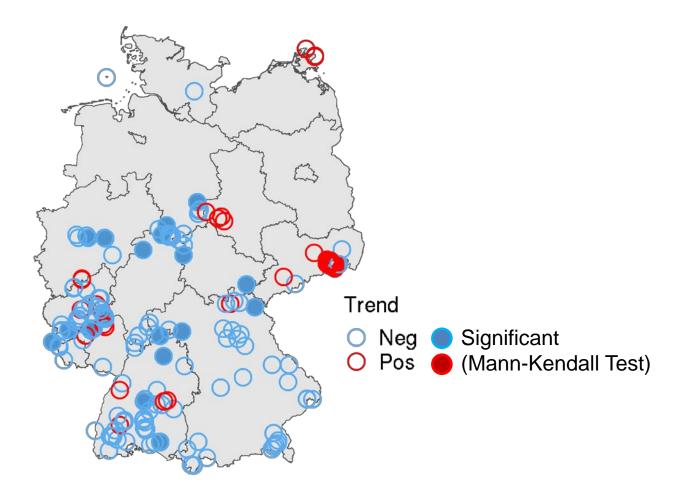


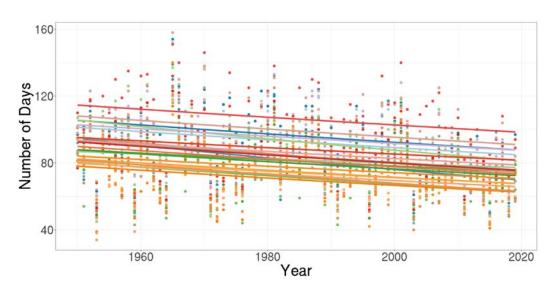

Logistic regression model:

$$p = \frac{1}{1 + \exp(-\beta_0 - \beta_1 precip - \beta_2 pw - \beta_3 ft - \beta_4 precip pw)}$$

Nissen et al.: https://doi.org/10.5194/nhess-2021-243 (under review)

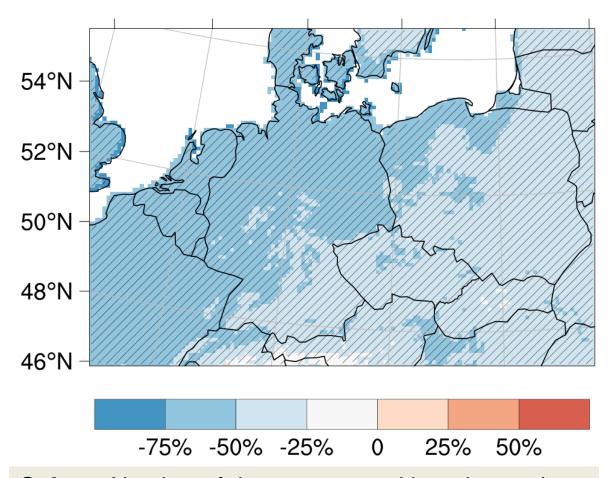
Rockfall data





Trends (1950-2020) from logistic regression model

Input: Gridded meteorological station data


- E-OBS (Tmin,Tmax) Cornes et al. 2018
- REGNIE (Precip) Rauthe et al. 2013

Trend in annual number of days with prob>prob_{clim} mostly negative. Stat. significant only at few stations.

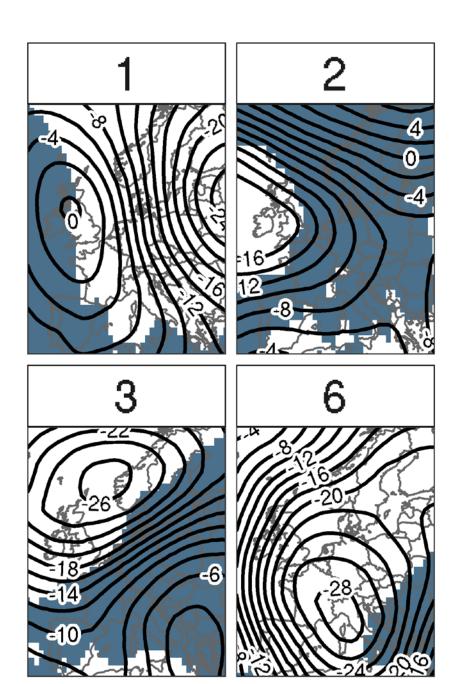
Decrease at stations with statistical significance is between -2 and -4% per decade

Analysis of climate change simulations using the logistic regression model

Colour: Number of days per year with prob > prob_{clim}

decreases

Hatched: Monte Carlo Test indicates at least 90%


statistical significance in 90% of the models

1971-2000 vs. 2071-2100 RCP8.5 EURO-CORDEX-11

Driving Model	Regional Model
CNRM-CERFACS-CNRM-CM5	SMHI-RCA4-v1
ICHEC-EC-EARTH	SMHI-RCA4-v1
IPSL-IPSL-CM5A-MR	SMHI-RCA4-v1
MOHC-HADGEM2-ES	SMHI-RCA4-v1
MPI-M-MPI-ESM-LR	SMHI-RCA4-v1
ICHEC-EC-EARTH	DMI-HIRHAM5-v1
NCC-NORESM1-M	DMI-HIRHAM5-v1
IPSL-CM5A-MR	IPSL-INERIS-WRF331F-v1
CNRM-CERFACS-CNRM-CM5	CLMcom-CCLM4-8-17-v1
ICHEC-EC-EARTH	CLMcom-CCLM4-8-17-v1
MOHC-HADGEM2-ES	CLMcom-CCLM4-8-17-v1
MPI-M-MPI-ESM-LR	CLMcom-CCLM4-8-17-v1
MPI-M-MPI-ESM-LR	MPI-CSC-REMO2009-v1
CNRM-CERFACS-CNRM-CM5	KNMI-RACMO22E-v2
MOHC-HADGEM2-ES	KNMI-RACMO22E-v2
ICHEC-EC-EARTH	KNMI-RACMO22E-v1
IPSL-IPSL-CM5A-MR	KNMI-RACMO22E-v1
MPI-M-MPI-ESM-LR	KNMI-RACMO22E-v1
NCC-NORESM1-M	KNMI-RACMO22E-v1
MPI-M-MPI-ESM-LR	GERICS-REMO2015-v1
NCC-NORESM1-M	GERICS-REMO2015-v1
ļ	

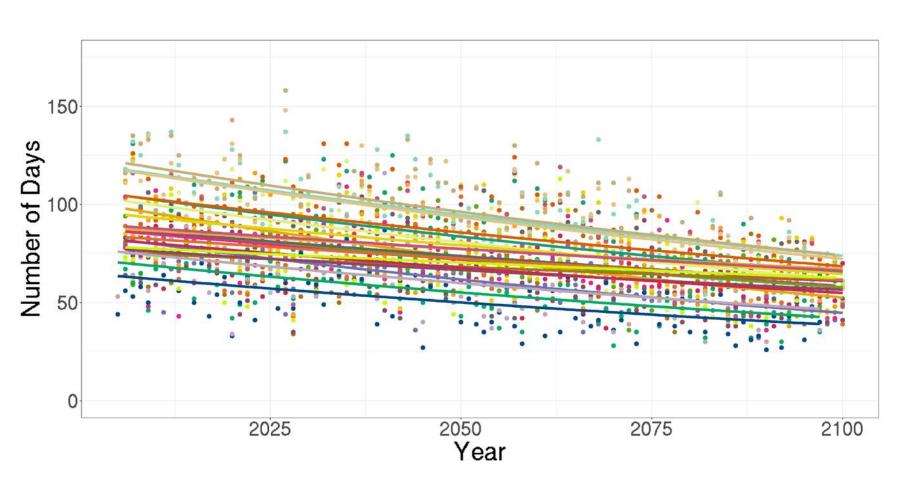
Alternative approach

Idea: Large-scale weather patterns are more robust than small scale meteorological variables

Identification of relevant weather patterns:

- 1. SANDRA clustering algorithm applied to weather situations at rockfall days (ERA5 data)
- 2. All other days are assigned to clusters and relevance of classes for rockfall is determined (X²-test).
- 3. Comparison of 220 classifications based on 500hPa geopotential height (GPH500) or mean sea-level pressure.

Result: 4 relevant large-scale patterns. They include 34% of the events and 16% of all days. Combined probability increase 106%


Figure: Composite of GPH500 (dam) and water vapour anomalies for the relevant large-scale weather patterns

Analysis of climate change simulations based on weather patterns

RCP8.5 EURO-CORDEX-11

Trends in the number of days associated with the relevant weather patterns are negative and statistically significant (95%) in all scenario simulations.

Decrease between -0.5 and -1.5% per decade.

The colours represent the different simulations.

Summary

Analysis trends in rockfall probability due to meteorological conditions

- 2 methods (logistic regression and large-scale weather patterns)
- 2 periods (observational period, climate scenario simulations)

Robust signal: Decrease in the probability for rockfall in Germany