Dual-polarisation X-band radar estimates of precipitation assessed using a distributed hydrological model for mountainous catchments in Scotland

John R. Wallbank^{1*}, S.J. Cole¹, R.J. Moore¹, D. Dufton², R. Neely², L. Bennett²

1. UK Centre for Ecology & Hydrology. 2. National Centre for Atmospheric Science *johwal@ceh.ac.uk

- NCAS's mobile X-band dual-polarisation weather radar was sited in a mountainous region of Northern Scotland where the national C-band network has only remote coverage.
- Data have previously been assessed against raingauge measurements. Here we present a hydrological assessment using UKCEH's G2G distributed hydrological model.

X-band Quantitative Precipitation Estimates (QPEs)

Predominantly using single-polarisation.

Fully using dualpolarisation variables.

Precip. Type	DESCRIPTION
R(Z)	A simple estimate based on the unfiltered horizontal reflectivity with no post-
	processing beyond calibration.
R(Z+DTM)	A reflectivity-based estimate with simple clutter mitigation and a beam
	blockage correction using Digital Terrain Model (DTM) data.
R(Z+DTM+QC)	As per R(Z+DTM) but additionally removing spurious radar echoes.
R(Z+DTM+QC+At)	As per R(Z+DTM+QC) but applying a dual-polarisation based attenuation
	correction to the beam blockage correction and reflectivity filter.
R(ZC)	Similar to R(Z+DTM+QC+Att) except using a specific attenuation derived
	clutter map to correct beam blockage.
R(A _h)	Specific attenuation is converted to rain-rate using a fixed R(A) relationship.
	R(ZC) is used as a fall-back.
R(A _{h.THR})	As per R(A _h) except only applying the R(A) relationship where the total
·	differential phase shift exceeds 5°.
$R(Z(A_h))$	Specific attenuation is converted to reflectivity before calculation of rain-rate.
	This is used when total differential phase shift is greater than 5°; otherwise
	R(ZC) is used as a fall-back.
R(KDP-Z)	Smoothly blends an estimate based on the specific differential phase for high
,	intensity precipitation with the R(ZC) estimate at lower intensities (<20mm/h).
R(Dual-Pol)	As per $R(Z(A_h))$ except using $R(KDP-Z)$ for infilling.

Hydrological assessment

Hydrological assessment

- Catchments with mean LUE > 4 km always have a strong negative bias (worse than -50%) as the radar beam overshoots most precipitation.
- Beam elevation has a stronger influence than range in this mountainous region, despite a stronger sensitivity to range in radars at X-band than at longer wavelengths.
- Several nearby catchments suffer large positive bias due to an antenna elevation pointing error affecting Period 1.

Performance statistics calculated on modelled flow using R(Dual-Pol) input

Hydrological assessment

Comparing all QPEs across all catchments

Comparing to national C-band radar network

(NB: no raingauge merge or similar corrections are applied to X-band QPEs, in contrast to those from the national C-band network.)

email: johwal@ceh.ac.uk

Presented work: Radar Applications in Northern Scotland

- Wallbank, Cole, Moore, Dufton, Neely, Bennett (2022) Dualpolarisation X-band radar estimates of precipitation assessed using a distributed hydrological model for mountainous catchments in Scotland. Under Review (Journal of Hydrology).
- Neely, Parry, Dufton, Bennett, Collier (2021) Radar Applications in Northern Scotland (RAiNS). J. Hydrometeor. 22(2), 483–498.
- Bennett (2019) RAINS: NCAS mobile X-band radar scan data from Kinloss Barracks, Forres, Scotland, Version 1. Centre for Environmental Data Analysis, 26 February 2019.
- https://sci.ncas.ac.uk/rains/

Grid-to-Grid hydrological model:

- Bell, Kay, Jones, Moore, Reynard (2009) Use of soil data in a grid-based hydrological model to estimate spatial variation in changing flood risk across the UK. J. Hydrol. 377(3–4), 335– 350.
- Moore, Cole, Bell, Jones (2006) Issues in flood forecasting: ungauged basins, extreme floods and uncertainty. IAHS Publ. 305, 103-122.

Ongoing work: Radar Applications in Northern England

- https://sci.ncas.ac.uk/raine/
- 2yrs+ worth of data

