

Observations and multiple scales in convection permitting data assimilation

Sarah L Dance, s.l.dance@reading.ac.uk, 90 @DrSarah Dance

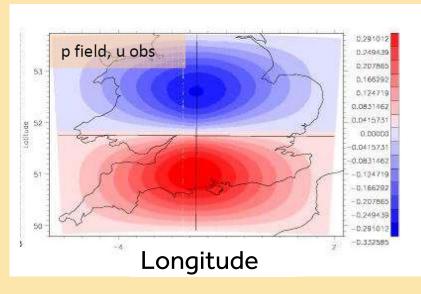
With thanks to contributors to pre-meeting discussion: Zak Bell, Nancy Nichols, Jacqueline Sugier, David Simonin, Jo Waller

Engineering and Physical Sciences Research Council

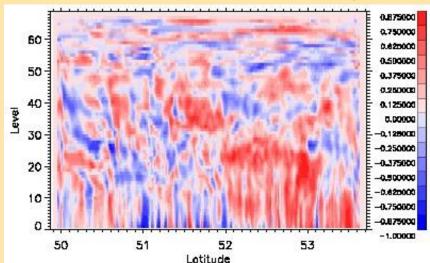
Natural Environment Research Council

Motivation – High impact weather

- Convection permitting (km-scale) NWP has been operational in many countries for years (e.g. UK since 2005)
- Particularly suited to hazard forecasting (convective rainfall, windstorms, fog, snow etc)
- Typically hourly cycling, limited area models
- Lead times 0-36 hours
 - Including NWP-based nowcasting and/or blending with extrapolation-based nowcasting in first 6 hours.



Key issues


- Many of the fundamental problems for km-scale DA have still not been solved (e.g. Dance, 2004, Dance et al, 2019)
 - Rain-out in the early part of the forecast
 - Multi-scaling how to correct the small scale without destroying large-scale balance
 - Nonlinearity, non-Gaussianity, short predictability timescales
 - Making the most of observations relating to moisture

Global DA system increment

Ensemble w-q correlations for 20 July 2011

From Ross **Bannister** (2013)

Observing gaps

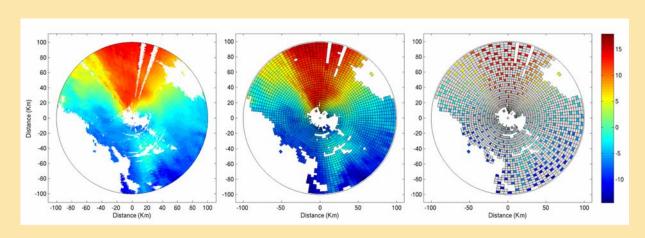
Capability location	Layer	Accuracy		Horizontal spacing		Vertical resolution		Observation cycle		Timeliness		
Surface- based		Land Domain										
	Near	Т	W	Т	W			Т	W	Т	W	
	Surface	q	Р	q	P			q	Р	q	Р	
	PBL	Т	W	Т	W	Т	W	Т	W	Т	W	
		q	iwv	q	iwv	q		q	iwv	q	iwv	
Space- based		'Cloud free' Domain										
	PBL	Т	W	Т	W	Т	W	Т	W			
		q		q		q		q				

	Falling below OSCAR minimum requirement					
nadir	Insufficient information available					
	Meeting OSCAR threshold requirement					
	Meeting OSCAR breakthrough requirement					
	Meeting OSCAR goal requirement					

Thanks to Jacqueline Sugier for this Table.

Requirement from WMO OSCAR RRR

Image from https://public.wmo.int/en/programmes/global-observing-system


- High priority variables for km-scale forecasting: Humidity, wind and temperature
- Major gaps in horizontal spacing and observation cycle
- MTG will help narrow the gap for humidity and temperature but less so in the PBL

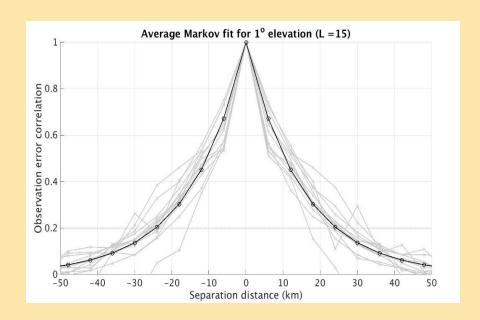
Closing observation gaps

Too expensive/impractical to close the observation gap with conventional scientific observations alone

Make better use of the observations we do have

We only use 5% of some observation types due to thinning.

Example: Doppler radar winds (old Met Office system from Jo Waller/David Simonin)

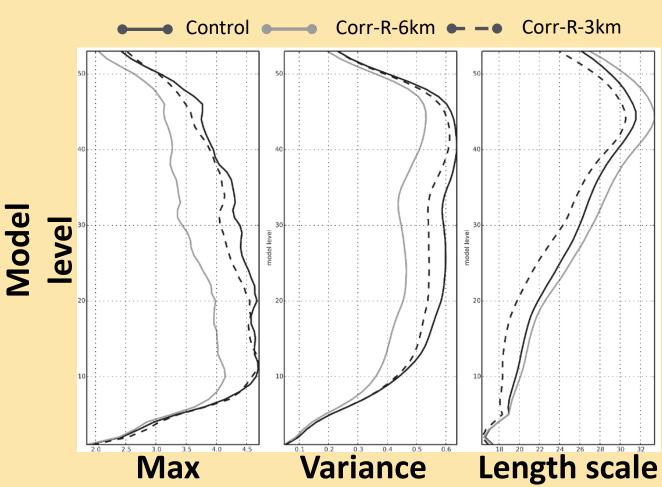

• Exploit crowdsourcing, citizen science and opportunistic data (Hintz et al, 2019)

Treating correlated observation error for Doppler radar winds (Simonin et al, 2019)

- Old 6km thinning reduced to 3km by treating spatial observation error correlations
- Spatial correlations estimated offline using Desroziers et al (2005) method
- New parallelization and smart load balancing
 - ⇒ can assimilate 4x as many observations without an increase in wall-clock time

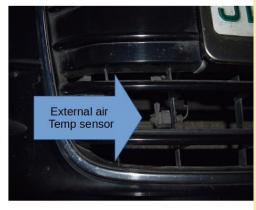
Joint work using Met Office UKV

Effect on wind increments (Simonin et al 2019)



Compared to the Control with diagonal **R** and 6km thinning

The **Corr-R-3km** wind's increments show more small scale features with smaller range

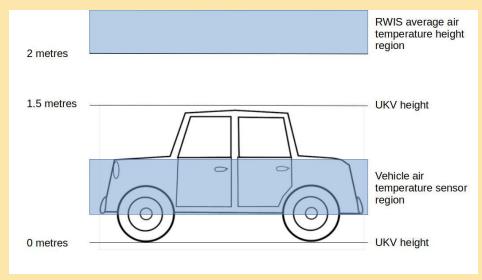

Compares well with theory (Fowler et al 2018)

We also found improvements in forecast skill – particularly for convective rainfall.

Opportunistic data -Vehicle-based Reading temperature observations (Bell et al, 2022)

Volunteers: 29

When: 20/02/18 - 30/04/18

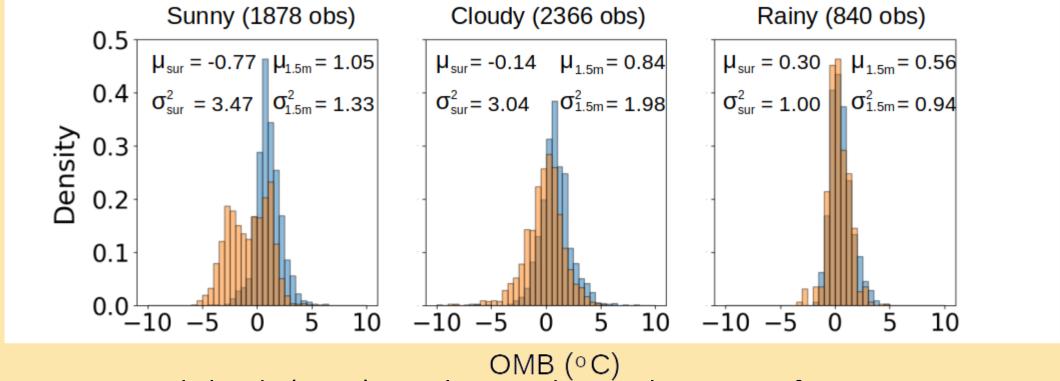

Total number of observations: 67959

Observations: dry bulb temperature, engine intake temperature, air pressure

Precision: 1C for temperatures, 10hPa for pressure

Metadata: date/time, speed, vehicle

identifier, GPS location



University of

O-B experiments

- Extensive QC 75% of dataset rejected
- Biggest problem is moving platform GPS update frequency insufficient

- In sunny and cloudy (rainy) weather conditions the UKV surface air temperature is warmer (colder) than the vehicle observations.
- Vehicle surface is more variable than Vehicle 1.5m regardless of weather type

Conclusions

- Convection-permitting DA is increasingly important for hazardous weather prediction in a changing climate
- However, forecast accuracy is limited by large observation gaps in the boundary layer
- Making the most of existing observations by treatment of spatially correlated errors.
 - Improved forecast skill has been demonstrated. Now operational for Doppler radar winds at the Met Office.
 - Working on numerical techniques for geostationary satellite data (Hu and Dance 2021)
- Use of opportunistic observations
 - Vehicle-based observations show promise, but better data collection protocols needed.

References

- Bell, Z., Dance, S. L., & Waller, J. A. (2022). Exploring the characteristics of a vehicle-based temperature dataset for kilometre-scale data assimilation. Meteorological Applications, 29(3), e2058.
- S.L. Dance (2004) Issues in high resolution limited area data assimilation for quantitative precipitation forecasting. Physica D, 196(1-2) pp 1-27
- Dance, S.L. et al (2019) Improvements in Forecasting Intense Rainfall: Results from the FRANC (Forecasting Rainfall Exploiting New Data Assimilation Techniques and Novel Observations of Convection) Project. Atmosphere 2019, 10, 125 doi:10.3390/atmos10030125
- Fowler, A. M., Dance, S. L. and Waller, J. A. (2018), On the interaction of observation and prior error correlations in data assimilation. Q.J.R. Meteorol. Soc., 144: 48-62. doi:10.1002/qj.3183
- Hintz, KS, O'Boyle, K, Dance, SL, et al. Collecting and utilising crowdsourced data for numerical weather prediction: Propositions from the meeting held in Copenhagen, 4-December 5, 2018. Atmos Sci Lett. 2019; doi:10.1002/asl.921
- Hu, G., & Dance, S. L. (2021). Efficient computation of matrix–vector products with full observation weighting matrices in data assimilation. Quarterly Journal of the Royal Meteorological Society, 147(741), 4101-4121.
- Simonin, D., Waller, J. A., Ballard, S. P., Dance, S. L. and Nichols, N. K. (2019), A pragmatic strategy for implementing spatially correlated observation errors in an operational system: an application to Doppler radial winds. Q J R Meteorol Soc. 2019; 145: 2772-2790. doi:10.1002/qj.3592