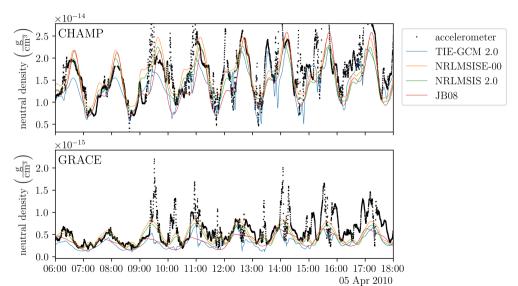
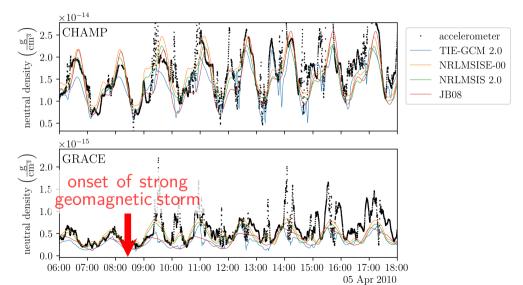

An Assimilative Version of TIE-GCM using PDAF

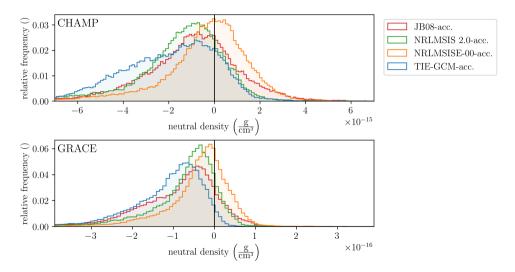
Armin Corbin, Kristin Vielberg, Jürgen Kusche May 23 2022



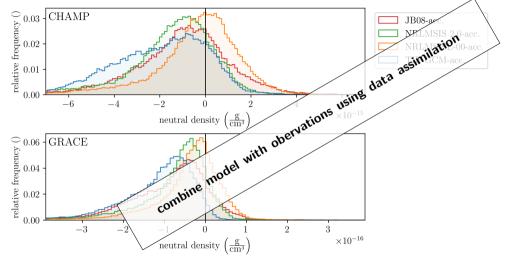
Neutral Density Predictions and Measurements



Neutral Density Predictions and Measurements



Differences to Measurements between April 27, 2010 and May 10, 2010



Differences to Measurements between April 27, 2010 and May 10, 2010

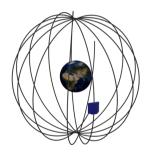
Assimilation Approaches

Observations that have been assimilated into the TIE-GCM

- electron density profiles¹
- ▶ along track accelerometer derived neutral densities²

Problem

How can we **globally improve** the prediction of the neutral mass density of the TIE-GCM by assimilating **sparse along track** observations without relying on the correct representation of **long-range correlations** within the ensemble?


¹e.g., Lee et al., 2012; Matsuo, Lee, and Anderson, 2013; Hsu et al., 2014; Kodikara et al., 2021.

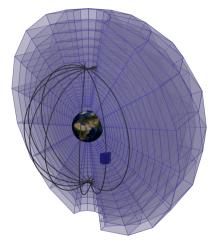
²e.g., Matsuo, Lee, and Anderson, 2013; Murray et al., 2015; Sutton, 2018.

Two-Step Assimilation

Step 1: Calibration of NRLMSIS 2.0

- compute NRLMSIS 2.0 neutral densities along orbit of CHAMP
- calculate scale factors between CHAMP accelerometer derived densities^a and NRLMSIS 2.0 densities
- apply low pass filter to scale factors

image of Earth: Reto Stöckli, NASA Earth Observatory


not to scale

^aVielberg et al., 2021.

Two-Step Assimilation

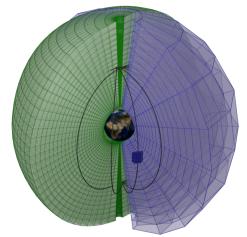
not to scale

image of Earth: Reto Stöckli, NASA Earth Observatory

Step 1: Calibration of NRLMSIS 2.0

- compute NRLMSIS 2.0 neutral densities along orbit of CHAMP
- calculate scale factors between CHAMP accelerometer derived densities^a and NRLMSIS 2.0 densities
- apply low pass filter to scale factors

Step 2: Assimilation of Calibrated Model


evaluate calibrated NRLMSIS 2.0 on regular grid

^aVielberg et al., 2021.

Two-Step Assimilation

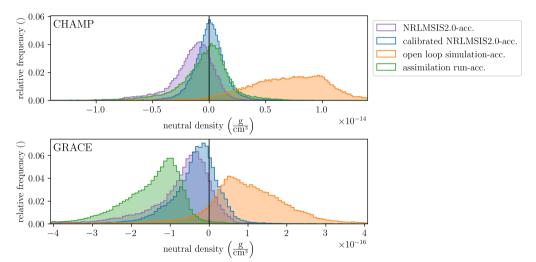
not to scale

image of Earth: Reto Stöckli, NASA Earth Observatory

Step 1: Calibration of NRLMSIS 2.0

- compute NRLMSIS 2.0 neutral densities along orbit of CHAMP
- calculate scale factors between CHAMP accelerometer derived densities^a and NRLMSIS 2.0 densities
- apply low pass filter to scale factors

Step 2: Assimilation of Calibrated Model


- evaluate calibrated NRLMSIS 2.0 on regular grid
- assimilate this into TIE-GCM

^aVielberg et al., 2021.

Results

The histograms were calculated using data between April 27, 2010 and May 10, 2010.

Conclusion

- average difference between TIE-GCM and accelerometer derived densities along CHAMP orbit is reduced by two orders of magnitude
- two-step approach enables global update of the model state and localization
- ▶ above about 350 km the density is not improved (correction of the first analysis step overshoots the innovation)
- we suspect that co-estimating calibration parameters helps to improve the predictions above that altitude

Learn More

Armin Corbin, Jürgen Kusche. Improving the estimation of thermospheric neutral density via two-step assimilation of in-situ neutral density into a numerical model, 11 May 2022, PREPRINT (Version 1) available at Research Square [https://doi.org/10.21203/rs.3.rs-1616740/v1]

Bibliography

Emmert, J. T. et al. (2021). "NRI MSIS 2.0: A Whole-Atmosphere Empirical Model of Temperature and Neutral Species Densities". In: Farth and Space Science 8.3. e2020FA001321. ISSN: 2333-5084. DOI: 10.1029/2020EA001321.

Hsu, Chih-Ting et al. (2014). "Effects of Inferring Unobserved Thermospheric and Ionospheric State Variables by Using an Ensemble Kalman Filter on Global Ionospheric Specification and Forecasting". In: Journal of Geophysical Research: Space Physics 119.11, pp. 9256-9267, ISSN: 2169-9402, DOI: 10.1002/2014.JA020390.

Kodikara, Timothy et al. (2021), "The Impact of Solar Activity on Forecasting the Upper Atmosphere via Assimilation of Flectron Density Data", In: Space Weather 19.5.

e2020SW002660, ISSN: 1542-7390, DOI: 10.1029/2020SW002660.

Lee, I. T. et al. (2012). "Assimilation of FORMOSAT-3/COSMIC electron density profiles into a coupled thermosphere/ionosphere model using ensemble Kalman filtering". In: Journal of Geophysical Research: Space Physics 117.A10. DOI: https://doi.org/10.1029/2012JA017700. eprint: https://agupubs.onlinelibrary.wiley.com/doi/pdf/10.1029/2012JA017700. URL: https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1029/2012JA017700.

Matsuo, Tomoko, I-Te Lee, and Jeffrey L. Anderson (2013). "Thermospheric mass density specification using an ensemble Kalman filter". In: Journal of Geophysical Research: Space Physics 118.3, pp. 1339-1350. DOI: https://doi.org/10.1002/jgra.50162. eprint; https://agupubs.onlinelibrary.wiley.com/doi/pdf/10.1002/jgra.50162. URL; https://agupubs.onlinelibrary.wilev.com/doi/abs/10.1002/jgra.50162

Murray, S. A. et al. (2015). "Assessing the Performance of Thermospheric Modeling with Data Assimilation throughout Solar Cycles 23 and 24". In: Space Weather 13.4, pp. 220–232. ISSN: 1542-7390, DOI: 10.1002/2015SW001163

Nerger, Lars, Qi Tang, and Longjiang Mu (Sept. 2020). "Efficient Ensemble Data Assimilation for Coupled Models with the Parallel Data Assimilation Framework: Example of AWI-CM (AWI-CM-PDAF 1.0)", In: Geoscientific Model Development 13.9, pp. 4305-4321, ISSN: 1991-959X, DOI: 10.5194/gmd-13-4305-2020.

Qian, Living et al. (2014). "The NCAR TIE-GCM: A Community Model of the Coupled Thermosphere/Jonosphere System". In: Modeling the Jonosphere-Thermosphere System. Ed. by Joseph Huba, Robert Schunk, and Khazanov George, 1st ed. Geophysical Monograph Series, American Geophysical Union (AGU), pp. 73-83, DOI: 10.1002/9781118704417, eprint: https://agupubs.onlinelibrary.wilev.com/doi/pdf/10.1002/9781118704417.

Sutton, Eric K, (2018), "A New Method of Physics-Based Data Assimilation for the Quiet and Disturbed Thermosphere", In: Space Weather 16.6, pp. 736-753, ISSN: 1542-7390, DOI: 10.1002/2017SW001785

Vielberg, Kristin et al. (2021). TND-IGG RL01: Thermospheric neutral density from accelerometer measurements of GRACE, CHAMP and Swarm. data set. DOI: 10.1594/PANGAEA.931347. URL: https://doi.org/10.1594/PANGAEA.931347.

Software

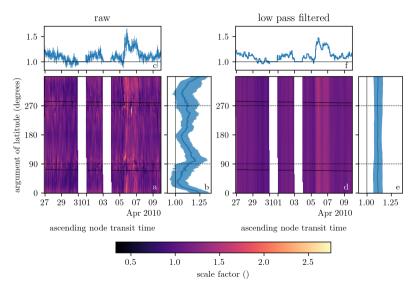
Thermosphere Ionosphere Electrodynamics General Circulation Model³(TIE-GCM)

- global, physics based model of the upper atmosphere
- ranges from 97 km to about 600 km altitude

Parallel Data Assimilation Framework⁴(PDAF)

- software environment for ensemble data assimilation
- ► fast since ensemble members are forecasted in parallel

Naval Research Laboratory Mass Spectrometer Incoherent Scatter radar⁵(NRLMSIS 2)


- empirical model of the entire atmosphere
- constructed from observations mainly below 105 km

¹Qian et al. (2014), ²Nerger, Tang, and Mu (2020), ³Emmert et al. (2021)

Scale Factors

