

Contact: tbrivoal@mercator-ocean.fr

A new high-resolution zoom over the North-East Atlantic based on NEMO 4.2 (IMMERSE) version

BRIVOAL Théo, Jérome Chanut, Mathieu Hamon

Mercator Océan

Configuration description

Configuration : eNEATL36 + AGRIF108 zoom ("IBI prototype like")

- NEMO 4.2 (post-IMMERSE)
- Parent configuration : eNEATL36
 - 1/36° resolution (~2-3km)
 - 150s time step
 - Realistic forcing at boundaries
- High resolution nest (AGRIF):
 - 1/108° resolution (~1km)
 - 50s time-step
- Two-way nesting between the parent and the child configuration
- Free simulation from January 2017 to July 2018 : NEST
- Objectives
 - Validation of the simulation (Macroscopic)
 - Impact on the ocean dynamics
 - => Comparison with observations and with a twin simulation with no nest : TWIN

Averaged SST over 2018 on the eNEATL36 domain Futur zoom is indicated with the blue squarre

Macroscopic validation

- ➤ Tides : validation with FES2014
- Continuous tidal solution
- Same order of magnitude of the difference NEST – FES and Maraldi et al. (2013)
- Differences mostly related to a drag boost in NEST

- > SLA along satellite tracks (Jason 3)
- Unfiltered from tides
- Good agreement with satellite SLA for scales > 100-50km (=satellite effective resolution)
- > T & S: Similar differences with observations with a twin simulation with no nest (see annexes)

Two-way nesting: realistic and continuous large scale solution across the nest boundary

Internal waves (ITW) crossing the nest boundaries

- A well known issue in nested configurations (e.g : Debreu et al. 2008) :
 - ITW information should be transmitted across the nest boundaries
 - ITW should not be reflected by the boundaries
- ITW generated over the continental shelf
- ITW information transmitted through the nest boundaries
- No wave reflection

1st baroclinic mode current divergence (1/s)

Two way nesting enables internal wave information to be transmitted across the nest boundaries

Impact on ocean dynamics

 Comparison with a twin simulation with no nest (TWIN)

Subdaily KE:

- Smaller in the Manche and North sea
 => Reduced tides in NEST
- Increase of KE due to internal waves (Biscay)
- Increase of KE on the continental slope

Submonthly KE:

- Mediterranean sea = small Rossby radius
- Mediterranean mesoscale structures better resolved in NEST => increase in KE

1 day -> 1 month KE (NEST)

Sub-daily KE diff (NEST - TWIN)

1 day -> 1 month KE diff (NEST - TWIN)

Conclusion & perspectives

Conclusions:

- The nest's model solution is realistic at large scale
- Two-way nesting:
 - enables a continuous model solution across the nest boundaries
 - allow internal wave information to be transmitted across the nest boundaries
- The high-resolution nest increase the KE signature of ITW in the north-east Atlantic and of mesoscales structures in the Mediterranean Sea

Perspectives:

- Validation of small scales with observations (IMMEDEA, CMCC)
- Additional tests over the nested configuration :
 - Increase the vertical resolution
 - Tests with an atmospheric boundary layer model
 - Wetting & drying

Additionnal comments:

- The configuration namelists are available on the IMMERSE github : https://github.com/immerse-project/eNEATL36-AGRIF_Demonstator
- The data will soon be available on a thredds server at Puertos del Estado

Annexe 1: SST validation

SST: comparison with **ODYSSEA SST**

- Slight differences at small scales between NEST and TWIN.
- Not much change at large scales
- Slight improvement of the SST in the alboran sea in NEST.
- Warm bias, stronger in summertime

Annexe 1: SSS validation

SSS: comparison with ESACCI SSS

- Slight differences at small scales between NEST and TWIN.
- Fresh bias in the Mediterranean sea and near coasts
- But strong incertitude on the satellite SSS data near coasts!
- Good agreement with obs over the Atlantic
- NEST / TWIN : Not much change at large scales

0.000 0.075 0.150 0.225 0.300 0.375 0.450

Annexe 5: Vorticity structures and two-way nesting

Nest boundaries

- 2 way nesting, so we need to check if the structures are consistent inside and outside the nest
- Vorticity structures crossing the nest boundary
- Vorticity structures are consistent inside and outside the AGRIF domain

- 3

- 2

Annexe 4: Impact on monthly KE

Monthly KE:

- Mostly, changes in the position of long-lasting eddies.
- Slight increase of monthly KE over zoom
- Mediterranean sea: reduction of the Algerian current, and increase of the Mediterranean northern current

