

Soil geochemistry as a major driver of carbon allocation, stocks and dynamics in vegetation and soils of African tropical forests

Sebastian Doetterl, EGU 2022; BG3.6

Co-Authors: **B. Bukombe** (First author), M. Bauters, P. Boeckx, L. Cizungu, M. Cooper, P. Fiener, L. Kidinda, I. Makelele, D. Muhiondo, B. Rewald, K. Verheyen

Geoclimatic controls on soil carbon stabilization

(Schimel et al. 2015)

- old-growth African montane forest represent a significant amount of global terrestrial vegetation C stock and the global NPP (e.g. Cuni-Sanchez Nature 2021)
- The lack of field-based data limits our understanding of the drivers of NPP and C allocation
- Understanding the drivers of biomass productivity and C allocation strategies in old-growth tropical forests is key element to estimate their contribution to long-term climate change mitigation

Research questions

- What role does soil geochemistry play as a driver of NPP and C allocation in tropical montane forests?
- Can similarly developed forests show plasticity in their root:shoot C allocation depending on soil properties?
- Do soil carbon stocks relate to NPP and biomass C input in tropical soils?

Our hypothesis:

Geology matters also in old, weathered soils: Nutrient replenishment and soil C stabilization will vary with parent material geochemistry

- Study sites are located in the East African Rift Valley system across distinct soil parent material Mafic (most fertile) -> felsic -> mixed sedimentary rocks (least fertile)
- Plots in old growth forests were installed on along topographic gradients
- C compartments (NPP, C allocation and stocks) were assessed for wood, litter and root biomass as well as soil organic C monitored over two years, including forest inventories

Doetterl et al. (2021)

S. Doetterl 21.05.2022

Bedrock and soil chemistry

Mafic

Kivu province DRC

Basalt

Felsic

Kabarole District (S-W) Uganda

Granite and Gneisses

Mixed (sediments)

Western Province, Uganda Rwanda

Siliciclastic schists

Bedrock and soil chemistry

Doetterl et al. (2021)

Plant NPP, C stocks and C allocation strategies in African Tropical Forests across geochemical regions

Bukombe et al. (in review)

Soil biogeochemisty and NPP

- NPP wood, and wood C allocation increased with exchangeable base cations, available-N and P
- NPP roots, and roots C allocation decreased with exchangeable base cations and total reserve base available-N and P
- NPP litter has no strong soil controls

CN ratios and C stocks across geochemical regions and topography

Bukombe et al. (in review)

Conclusions

- NPP compartments (wood & fine roots) strongly relate to soil biogeochemistry in tropical montane forests.
- Topography had no effect on NPP, C allocation or C stocks in intact tropical forest landscapes
- SOC stocks were not related to plant biomass C input or stocks, suggesting that these tropical soils have exceeded their maximum potential to stabilize C despite high input -> Mineralogy controlled C stocks through stabilization more than plant C input.
- Many millennia of soil weathering under tropical conditions did not abolish the control of soil geochemical properties inherited from parent material

ETH zürich

Acknowledgements Special thanks to:

Thank you for listening!

Congo Biogeochemistry Observatory

#congobiogeochem

