

How does anisotropy control rock slope deformation? A discrete element modelling investigation

Marius Huber

Doctorate in supervision of Jérôme Lavé and Luc Scholtès

May 2022

Anisotropy in rocks

- Rock masses anisotropy results from lithology (layering and foliation) and structures (joints)
- The mechanical properties (stiffness and strength) of most rock materials is direction dependent
- Sedimentary and metamorphic rocks exhibit transverse isotropy

wikipedia.org, "Joint (geology)"

nationalgeographic.com

Nova (1980): "Dependence of overall friction angle and cohesion on the inclination of the plane of least resistance" for transversely isotropic rocks

Anisotropic slopes fail and form landscapes

- Rock fabric controls slope deformation and drives failures, their mechanics and geometry
- Anisotropy is often described qualitatively for all types of deepseated failures, but there is a lack of systematic understanding of the effects of anisotropy orientation
- Implications for natural hazards and risks, as well as landscape evolution

sketches by Stead and Wolter (2015)

Modelling approach

Discrete element modelling with Yade

- Rock material imitated by bonded particles
- Inter-particle properties ≠ emergent properties,
 - → calibration needed (triaxial testing)
- Investigation on 2D slices in "slope step geometry"

TRIAXIAL TESTING (with DEM)

Modelling approach

How to set anisotropy in the model?

Introduction of weakness plane, following an approach by Dinç and Scholtès (2018)

- 1) Detection of bonds dipping subparallel to the weakness plane, angle range $\pm \Delta\theta$
- 2) Re-orientation of bonds along the weakness plane
- 3) New inter-particle properties are introduced for the re-oriented bonds (low stiffness, low strength)
 → calibration needed (triaxial testing)

TRIAXIAL TESTING (with DEM)

$$E_p$$
= 10 GPa, $Φ_p$ = 10°,
 T_p = C_p = 1 MPa, $Δθ$ = 55°

Modelling approach

Strength reduction method

applied on inter-particle strength (Cp and Tp)!

- strength is reduced stepwise when the slope is considered stable
- stability is assessed through the kinetic energy
- failure is identified by the rise of the kinetic energy

Results – failure plot

Strength needed to maintain stability

=> two minima and two maxima of slope stability for weakness plane angle range 180°

Strength is decreased up to failure

Different failure modes

60° slope angle !!

Stability minima 70°:

Toppling (rotation)

 disintegration from surface into the slope

displacement vectors (over 10 000 iterations at failure)

Stability minima 150°:

Sliding (translation)

 coherent block on wellestablished rupture surface

More results

60° slope angle !!

Slope angle 40°

Volume of failed particles

Divergence for low-rising weakness plane angles

Conclusions

- Discrete element models can be used to study the effects of anisotropy on the deformation of rock slopes
- When applying the 180° range of possible anisotropy-orientations we observe two stability maxima and two stability minima
- Two stability minima represent two different modes of failure, toppling and sliding respectively, they shift with slope angle
- Some correlation of failed volume and slope stability, but not for low rising weakness plane angles
- Where to go from here with the model?
 optimize model setup, study different slope scale properties and different geometries, analyse the kinetics of failure, stress inside the slope

Thank you for your attention !

If you like our research or have questions please come and talk to me in person or contact me via e-mail

marius.huber@univ-lorraine.fr

I am looking for postdoc opportunities!

Results

Kinetic Energy (moving average) of the two stability maxima and two stability minima (20°, 70°, 100°, 150°)

Emergent slope properties

Estimation of **emergent properties of the anisotropic slopes** at failure from inter-particle properties (triaxial testing)

Initial validation of DEM

Validation of isotropic DEM with analytical slope stability solution provided by Leshchinsky et al. (1985) based on Limit Equilibrium Method (LEM)

$$N_m = c_m/yH$$

 N_m = "stability number", normalized; c_m = normalized cohesion; y = average unit weight of the material above the slip surface; H = slope height

References

- Dinç, Ö., Scholtès, L., 2018. Discrete Analysis of Damage and Shear Banding in Argillaceous Rocks. Rock Mech Rock Eng 51, 1521–1538. https://doi.org/10.1007/s00603-017-1397-6
- Giot, R., Granet, S., Faivre, M., Massoussi, N., Huang, J., 2018. A transversely isotropic thermoporoelastic model for claystone: parameter identification and application to a 3D underground structure. Geomechanics and Geoengineering 13, 246–263. https://doi.org/10.1080/17486025.2018.1445874
- Leshchinsky, D., Baker, R., Silver, M.L., 1985. Three dimensional analysis of slope stability. Int. J. Numer. Anal. Methods Geomech. 9, 199–223. https://doi.org/10.1002/nag.1610090302
- Nova, R., 1980. The failure of transversely isotropic rocks in triaxial compression. International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts 17, 325–332. https://doi.org/10.1016/0148-9062(80)90515-X
- Smilauer, V., Angelidakis, V., Catalano, E., Caulk, R., Chareyre, B., Chèvremont, W., Dorofeenko, S., Duriez, J., Dyck, N., Elias, J., Er, B., Eulitz, A., Gladky, A., Guo, N., Jakob, C., Kneib, F., Kozicki, J., Marzougui, D., Maurin, R., Modenese, C., Pekmezi, G., Scholtès, L., Sibille, L., Stransky, J., Sweijen, T., Thoeni, K., Yuan, C., 2021. Yade documentation. The Yade Project. https://doi.org/10.5281/zenodo.5705394
- Stead, D., Wolter, A., 2015. A critical review of rock slope failure mechanisms: The importance of structural geology. Journal of Structural Geology 74, 1–23. https://doi.org/10.1016/j.jsg.2015.02.002