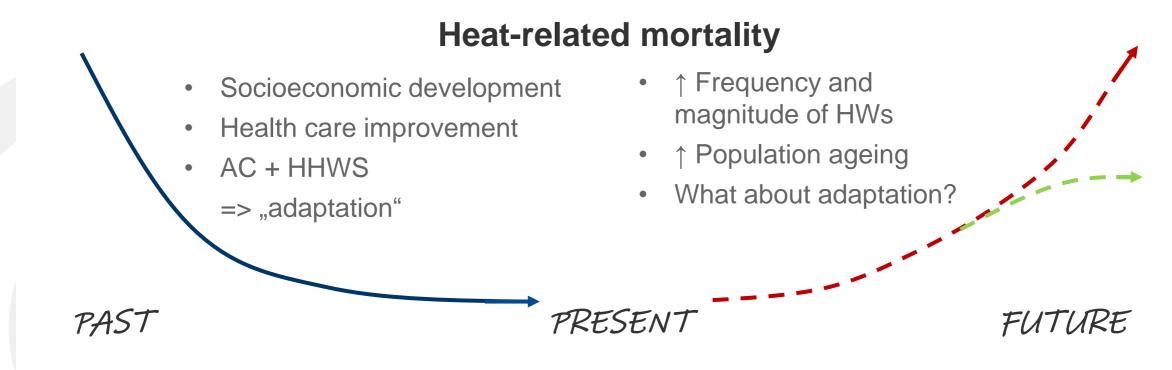


Changes in heat-attributable deaths in Prague, Czech Republic, over 1982–2019



Aleš Urban^{1,2}, Osvaldo Fonseca-Rodríguez^{1,3}, Claudia Di Napoli⁴, Eva Plavcová²

- ¹ Faculty of Environmental Sciences, Czech University of Life Sciences, Prague, Czech Republic
- ² Institute of Atmospheric Physics CAS, Prague, Czech Republic
- ³ Department of Epidemiology and Global Health, Umeå University, Umeå, Sweden
- ⁴ University of Reading, Reading, United Kingdom

Motivation

- Heatwaves represent the major atmospheric hazard regarding the number of fatalities/excess deaths in Europe.
- In association with the climate change, increased frequency and magnitude of heatwaves are projected in Europe for the 21st century.
- Discrapancy between historical observations and future projections

Data and goals

• DATA:

- 38 years of daily all-cause mortality data in Prague (1982–2019)
- Daily temperature (Tavg) records from Prague-Ruzyně airport
- AIMS:
- to analyse temporal changes in heat-related mortality over almost 4 decades
- Taking into account acclimatization to increasing temperature
- 5 warmest months (May–September) in 1980s, 1990s, 2000s, 2010s

Methods – R-package dlnm

Conditional Poisson regression in Distributed Lag Non-linear Model (DLNM):

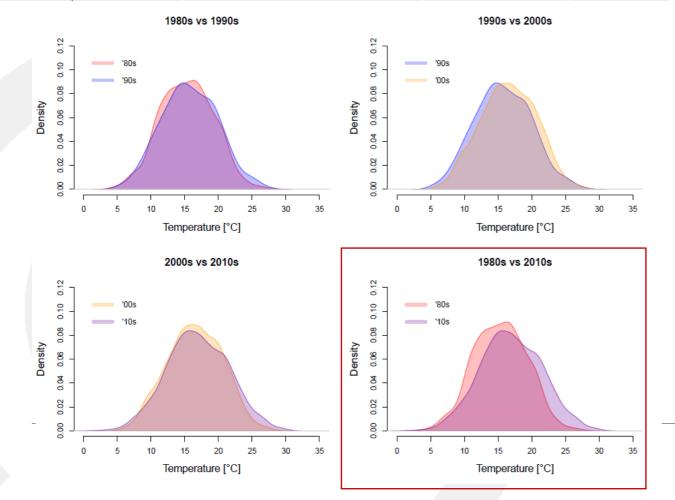
$$Log(\mu_t) = \alpha + \beta Crossbasis + \lambda Stratum_t$$

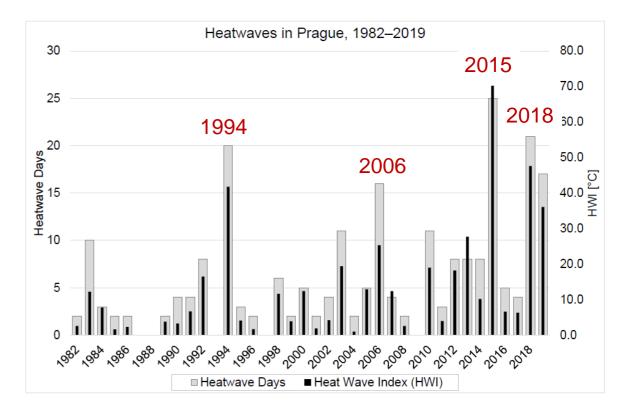
- *Crossbasis* = the non-linear and delayed effect of temperature (Gasparrini et al. 2015)
 - Tavg a quadratic B-spline with one internal knot placed at the 75th percentile of season-specific temperature distributions.
 - Lag variable a natural cubic B-spline with two internal knots placed at equally spaced values in the log scale; 10 day lag.
 - Calculates the relative risk (RR) of mortality considering the lagged effect of Tavg up to 10 days
- Stratum = indicator variable composed of year, month, and day of the week (Year:Month:DOW) to control for long-term and seasonal trends (Fonseca-Rodriguez et al. 2020)

Methods – R-package FluMoDL

 From RRs - attributable number of deaths (ADs) and the attributable fraction (AF %) of total May—September deaths on hot days were calculated for each decade and each year.

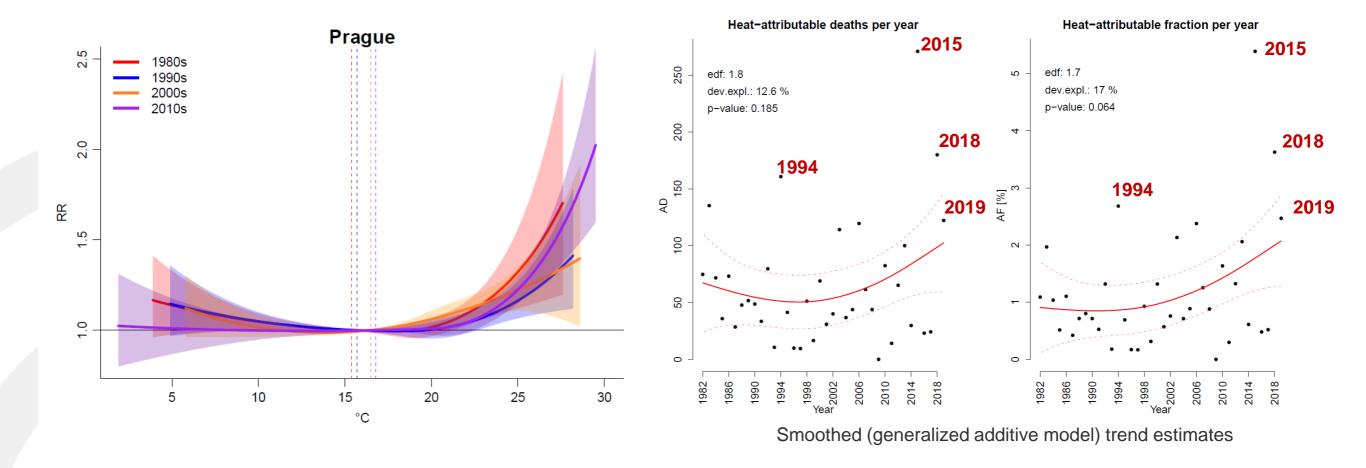
(Gasparrini and Leone 2014)


- Hot days daily mean temperature larger than the 95th percentile of the May-September Tavg distribution.
- Heat Wave Index (HWI) sum of temperature deviations above the 95th percentile on hot days



Results – increasing heatwave stress

- Hot day = 95th percentile of daily mean temperature in Prague-Ruzyně,
 May-September 1982–2019 38 years
- Heatwave (HW) = at least 2 consecutive hot days


1		Hot days	Mean length of HW (days)	HWs/year	T (°C)
	1980s	29	2.6	1.3	15.3
	1990s	62	5.1	1.9	15.7
	2000s	73	5.1	1.9	16.5
	2010s	139	11.0	3.3	16.9

Results – reversal trend in heat-mortality

- The risk of temperature-related mortality (RR) in summer months in Prague over the last four decades.
- Heat-attributable deaths = excess mortality calculated from RRs

Results – summary

heat threshold defined for each decade separately!

RR difference

		hot days	Tmean	HWI per year	RR (Q99)	AN per year	AF (%)
	1980s	62	23.1	12	1.22 (1.09, 1.37)	61	0.90
	1990s	79	24.3	15	1.19 (1.08, 1.32)	43	0.73
	2000s	79	24.4	12	1.24 (1.11, 1.39)	53	1.03
	2010s	88	25.8	16	1.50 (1.33, 1.69)	86	1.75

Decades	S	p-value
90s vs 8	0s	0.83
00s vs 8	0s	0.80
10s vs 8	0s	0.06
00s vs 9	0s	0.55
10s vs 9	90s	0.04
10s vs 0	0s	0.08

- Increasing trend in the number of deaths attributable to heat.
- Maximum in the 2010s and minimum in the 1990s.
- The total number of heat-attributable deaths increased from ≈43 to almost 90 per year between the 1990s and the 2010s
- corresponds to the fraction of 0.73 and 1.75 %, respectively, of the total number of deaths in the May–September season.
- Reversal of heat-attributable mortality?

Thanks for your attention!

@urbales urban@ufa.cas.cz

