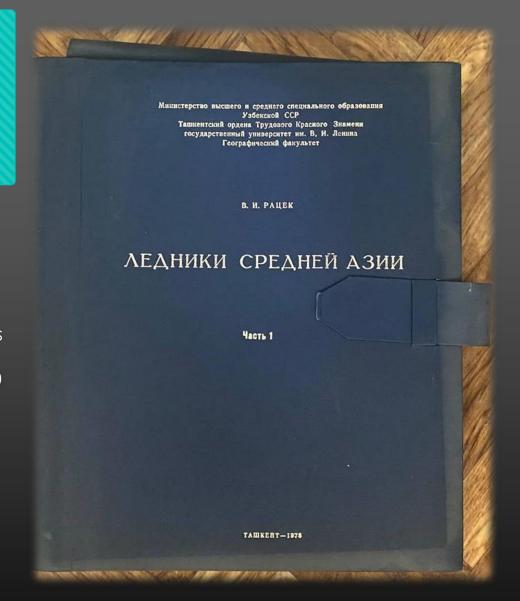
Tracking mountain geohazards in Uzbekistan with application of remote sensing and advances in data analysis.

PhD at National University of Uzbekistan

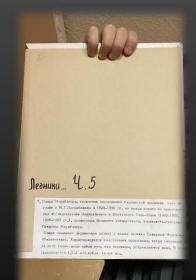
Sabitov Timur, et. al.

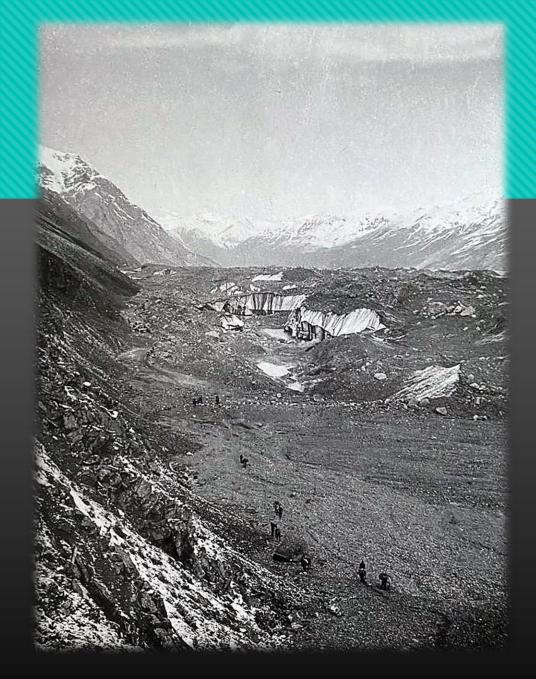
Overview

Retreating glaciers in some parts of the region are the reason of increasing number of mountain lakes and geological processes. Often lakes located in the mountain areas (hard to reach). Sometimes lakes outburst and create (GLOF'S) glacial lake outburst floods


- Past studies of mountain lakes in CA(Ratsek expedition, A.M. Nikitin, G.E. Glazirin, Shamsutdinov, Y.Tarasov and others)
- Current studies(Inventory of the lake)
- Future (RS and GIS integrated)
- Cases
- Problems (lack of data? Lack of expertise ?)
- O Discussion (What is happening with data ?)

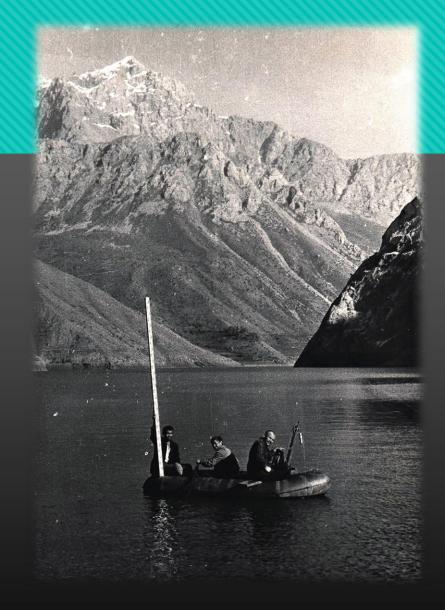
History of studies and sources

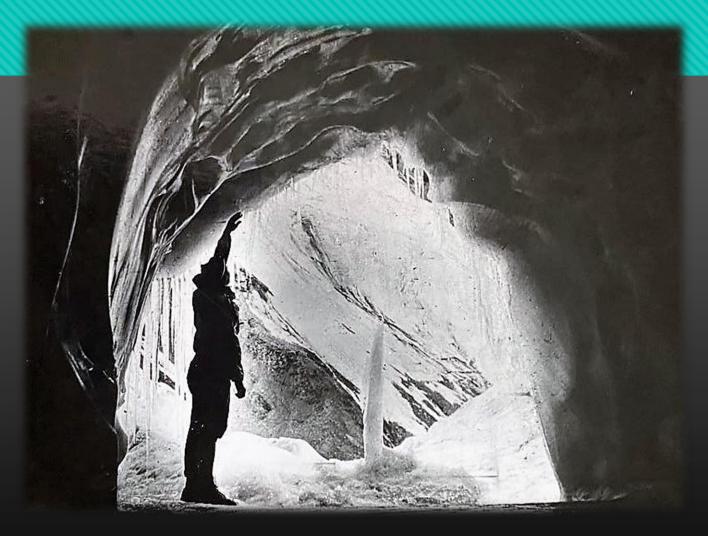

Lack of sources, lack of knowledge where to get information

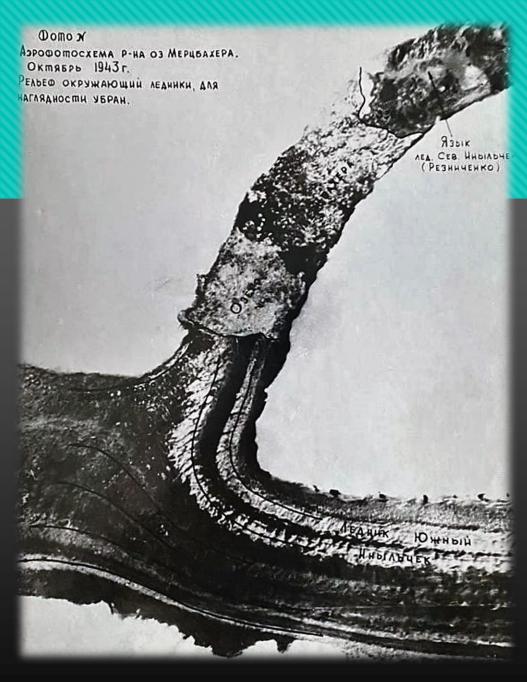

Published expedition photos and notes from Pamir and Tien Shan expeditions In early and mid 20th century, about 20 books, size A3 each with at least 30 to 50 photos with descriptions. Some examples are shown here as well.

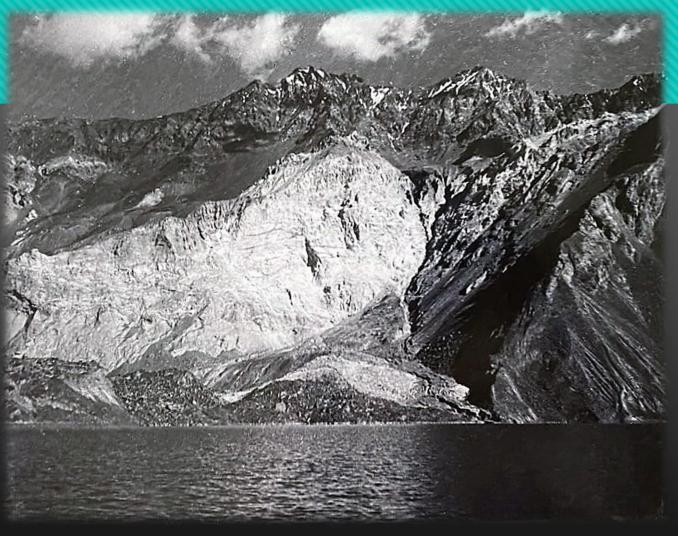
They cover mountain areas of Pamirs and Tien Shan regions

Base on Abramov glacier, Kg


Ratsek expedition to Pamirs, Lenin glacier, TJ


Field visits, aerial observations


Glacial lake, Lenin glacier, Tj



Bathymetric measurements, Sarez lake, Tj

Cave inside of Southern Inylchek glacier, Kg

Usoy fallout, Sarez lake

Aerial view, Merzbaher lake, 1943

A.M. Nikitin, Y.N. Ivanov, G.E. Glazirin and others

- O Detailed information about number, area, distribution of lakes in Central Asia
- Distribution by basins
- Distribution by elevation
- O By number, 60% of lakes situated in the mountain areas 1500-5500 m, however excluding Issik-Kul lake, 80% of the area of lakes distributed on the plains
- Average proportion of lakes area to the basin 0,56%, in the plains this proportion 0,27% in the mountain regions 2,04%.
- 5 main types of lakes by morphology (tectonic, glacial, hydrogenous, landslide originated, wind originated, thermocarst)
- Mountain group of lakes glacial, landslide dammed, thermocarst

Lake characteristics

- Morphometrical characteristics (Lake configuration)
 - \circ Lake elongation is the proportion of length of the lake (L) to the average width (b_{av}) L/b
 - \circ Lake compactness proportion of average width to the maximum width b_{av}/b_{max}
 - O **Development of water area** proportion of the area of the circumference with the length of a lake shoreline to the area of the lake (U1= $f_{kr}/f = 0.8L^2/f$)
 - O Development of shoreline length of a shoreline to the length of a circumference of an equalsized circle ($U_2 = 0.28L/f$)

Lake characteristics

- Morphometrical characteristics (vertical development)
 - Max depth
 - Mean depth
 - O Relative depth $h_{rel} = h_{\alpha \nu} / \sqrt[3]{f} f$ surface area of the lake
- Comparison Lake capacity indicators:
- \circ $c_1 = h_{av}/h_{max}$
 - o cylindric = 1
 - o hemisphere = 0,67
 - o parabolic = 0,5
- Openness mirror area to average depth
- Specific catchment ratio k₁- F/f
- Conditional water exchange (Volume per year of incoming water to the volume of water in the lake)

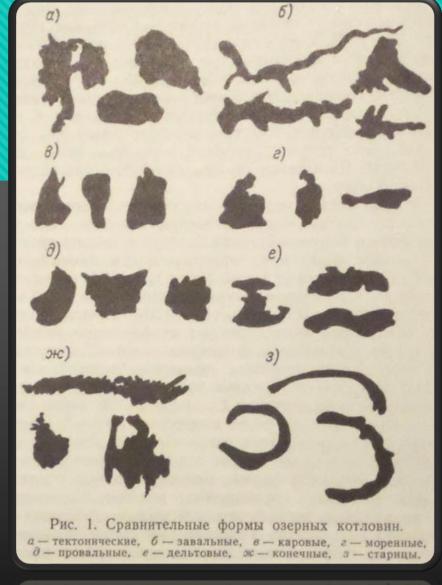
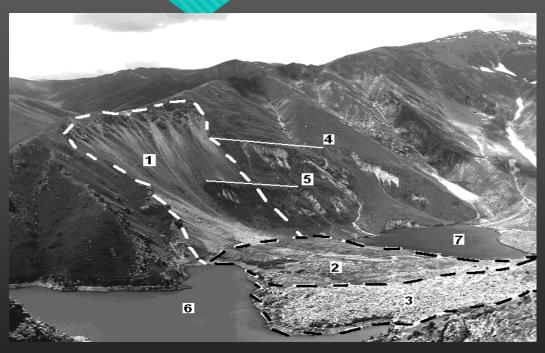
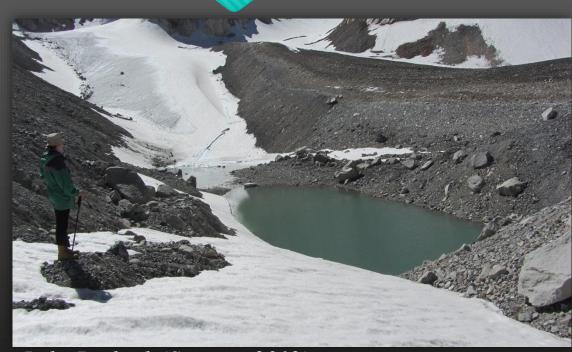



Рис. 1. Сравинтельные формы озерных котловии. a- тектонические, $\delta-$ завальные, s- каровые, z- морениме, $\partial-$ провальные, s- дельтовые, $\infty-$ конечиме, z- старицы.

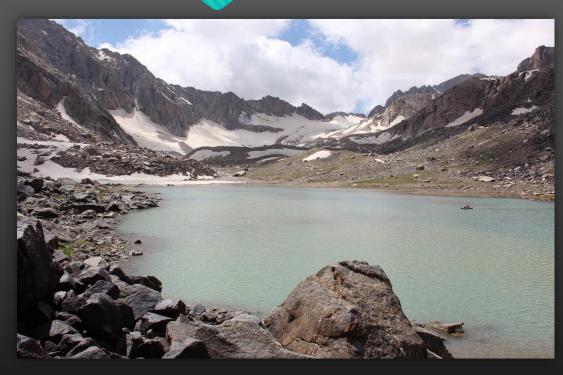
Early 2000



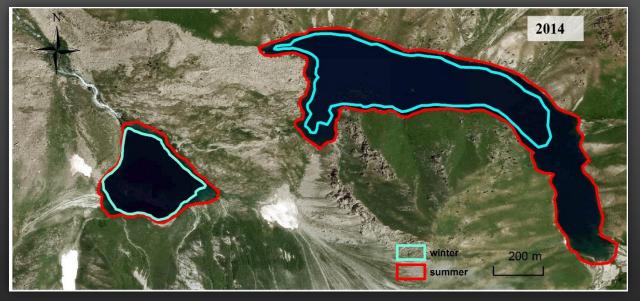
Sketch of the dam of the Ikhnach Upper lake (view to the South): 1 – part of the valley slope where landslip originated; 2 – the dam; 3 – a surface of the dam covered with boulders; 4 –upper side stage moraine; 5 – lower side stage moraine; the Ikhnach Upper lake; 7 – the Ikhnach Lower lake. Adapted from (Glazirin et al., 2013)

Ozernoe Lower lake. 1 – the stage moraine between the upper and lower lakes; 2 – outflow channel. Adapted from (Glazirin et al., 2013)

2010



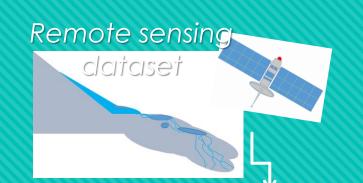
Lake Barkrak (Summer 2012)



Lakes Arashan (Summer 2014)

2015

Bathimetric measurements of the lake Kunkermes. 2015, Uz



Examples of the Ikhnach (h>1500 m.a.s.l.) lakes which are highly dynamic in area between individual calendar years and within the same year (depending on the timing of image acquisition).

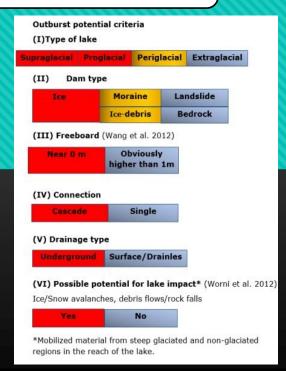
Regions of Uzbekistan in which mountain lakes have been analyzed: 1 – Kashkadarya, 2 – Surkhandarya, 3 – Tashkent, 4 – Shakhimardan

Reference dataset

Identification of lakes and digitalization

Classification of lake type and dam characteristics

> Outburst potential assessment


Lakes classification

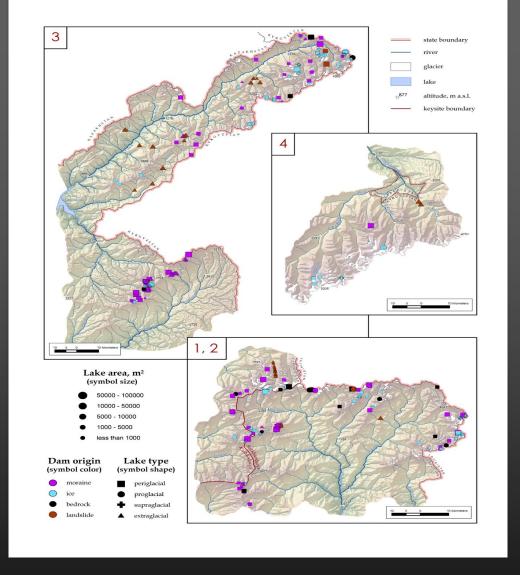
Low Medium High

Field surveys

Previous inventories and maps

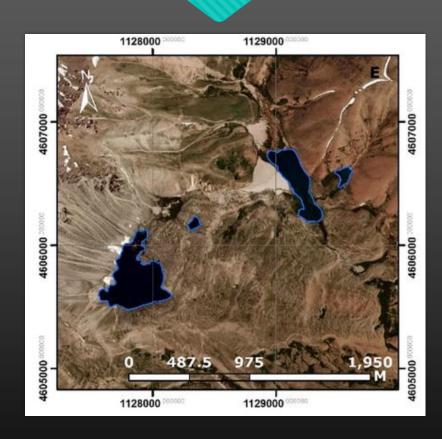
- bedrock
- landslide

- supraglacial extraglacial

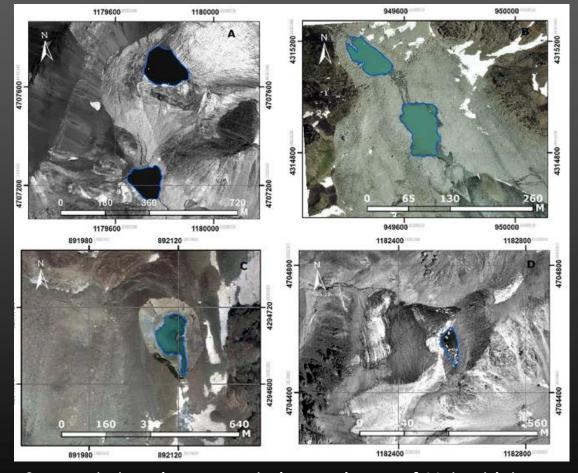

Lake type

(symbol shape)

periglacial proglacial


Lakes distribution in Uzbekistan

Most of the lakes are within Tashkent, Kashkadarya and Surkhandarya regions of Uzbekistan. Regions are part of Tien Shan, Pamir mountains. They serve as water sources to the Chirchik, Aksu, Kashkadarya and Surkhandarya rivers. Total population living downstream around 7-10 mln people, with Tashkent city and metro area of 5 mln.



Distribution of mountain lakes by regions in the Republic of Uzbekistan: 1-Kashkadarya, 2-Tashkent, 3-Surkhandarya, 4-Shakhimardan.

Lakes

Arashan lakes

Some lakes in mountain regions of Uzbekistan

Current studies

Inventory of lakes:

Location

Type

Outburst hazard

We lack of:

Volume

Bathymetric data

Upstream and downstream landcover properties

Existing studies of outburst modeling

We propose:

Extract volume of the lakes from existing relation F to V

Integrate Remote sensing (RS) to analyze satellite data of surrounding area

Reach specific modeling and generate hydrologic database (stream network and stream connection)

Integrate past RS observations to analyze trends of changes occurring upstream

Volume estimation: Data

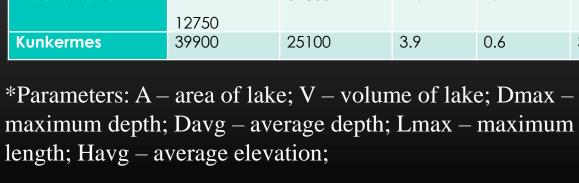
- Using different data sources (Bolch et al., 2011; Glazirin, 2013; Huggel et al., 2004; Loriaux and Casassa, 2013; Nikitin, 1987; Petrov et al., 2017; Sakai et al., 2000; Yao et al., 2012) as well as field measurements (Petrov et al., 2017), we were able to extract **172** of lakes with bathymetry observations after pre-processing.
- Most of these studies provided with some sort of equation explaining relationships between lakes volume and lakes area
- Most of these lakes are mountain lakes and located in pere glacial or glacial zones

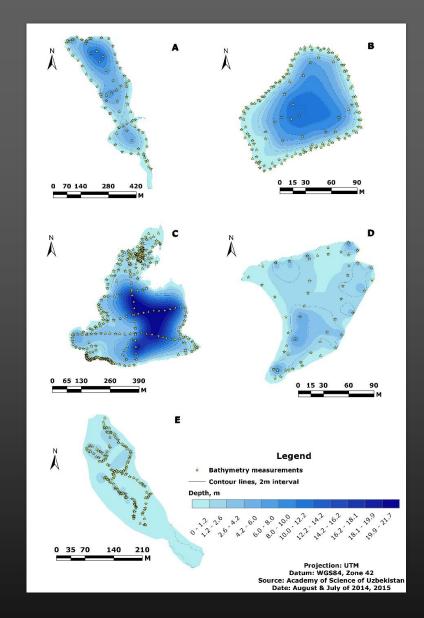
Preview of database

. A		В		С	D	E	F	G	Н	I	J	K	L	M	N	0	Р
Name			Vol					Year of measurements						Reference to literature source			
Abmach		0.5600000		0.0190000			-1988.0000000		Sakai 					Sakai, A., 2012. Glacial Lakes in the			
Qangzor		0.7600000		0.0214000			-1988.0000000		•					on First Expedition toGlaciers and Gla			
Paqu		0.3100000		0.0060000			-1988.0000000		•	NOTE:	Repetion			on First Expedition toGlaciers and Gla			
Lower		0.6000000		0.0280000			-1998.0000000		"					nd Its Outburst Flood in theNepal Hima			
Imja		0.6000000		0.0280000			-1998.0000000		"					nd Its Outburst Flood in theNepal Hima			
lmja		0.9000000		0.0360000			-2003.0000000		"					(2003) Volume Change of ImjaGlacia			
lmja		1.0100000		0.0355000			-2011.0000000		"					Mountain Development(ICIMOD) (201			
Tsho Ro		1.3900000		0.0766000			-1998.0000000							nd Its Outburst Flood in theNepal Hima			
Tsho Rol	ı	1.5400000		0.0859400			-2011.0000000							Mountain Development(ICIMOD) (201			
Thulagi		0.7600000		0.0318000	moraine-	Yamada	-1998.0000000	1995.0000000	•					nd Its Outburst Flood in theNepal Hima			
Thulagi		0.9400000		0.0353700			-2011.0000000							Mountain Development(ICIMOD) (201			
Dig		0.5000000		0.0100000	moraine-	Mool	-2001.0000000	N/G					Mool, P.K., S.R. Bajracharya and S	 P. Joshi (2001) Inventory of Glaciers, 	. Glacial Lake	es and Glac	ial Lake Outbu
Tam Pok		0.4700000		0.0212500			-2001.0000000	1999.0000000						P. Joshi (2001) Inventory of Glaciers,			
Ngozum		0.0500000		0.0002400	thermoka	Benn	-2000.0000000	1993.0000000						arren (2000) Rapid growth of asuprag			
Raphsth		1.3800000		0.0668300	moraine (Geologio	1995.0000000	1986.0000000	"				Geological Survey of India (1995) (Geology, EnvironmentalHazards and F	Remedial Me	asures of th	e Lunana Area
Lugge		1.1700000		0.0583000	moraine-	Yamada	-2004.0000000	2002.0000000						a, H. Fushimi, F. Nakazawa, T. Segawa	a, J. Uetake, f	R. Suzuki, N	l. Sato, Karma,
Ripimo		0.0200000		0.0001800	thermoka	Personal	1993.0000000	1993.0000000					Personal				
MT'		0.0420000		0.0005000	lce-damr	Blown an	-1985.0000000	N/G	Thomas Loriaux, Gi	NOTE:	VOLUME	*km3, AR	Blown, I., Church, M., 1985. Catast	Loriaux, T., Casassa, G., 2013. Evolu	ition of glacia	al lakes from	the Northern F
) Nostetuk		0.2620000		0.0075000	Moraine-	Clague a	-1994.0000000	N/G		NOTE:	Repetion	in HUGGE	Clague, J.J., Evans, S.G., 1994. Fr	ormation and failure of natural dams in	the Canadia	nCordillera.	Geological Su
Between		0.4000000		0.0075000	lce-damr	Maag	-1963.0000000	N/G		NOTE:	Repetion	in HUGGE	Maag, H.U., 1963. Marginal draina	ge and glacier-dammed lakes, Axel H	leiberg Island	.ln: Müller, F	. (Ed.), Prelimin
2 Cachet		4.0450000		0.2000000	lce-damr	Casassa	-2010.0000000	N/G		NOTE:	Repetion	in HUGGE	Casassa, G., Wendt, J., Wendt, A.	López, P., Schuler, T., Maas, HG.,	Carrasco, J.,	Rivera, A.,	2010. Outburst
3 Leones		19.5010000		2.4546100	Moraine-	Harrison	-2008.0000000	N/G					Harrison, S., Glasser, N., Winches	ter, V., Haresign, E., Warren, C., Duller	, G.A.T., Bail	ley, R., Ivy-C	Ochs, S., Janss
1 Nef		5.1330000		0.7707100	Moraine-	Warren	-2001.0000000	N/G					Warren, C., Benn, D., Winchester,	V., Harrison, S., 2001. Buoyancy-driv	en lacustrine	calving, Gl	aciar Nef, Chile
Lac D'Ar		0.0340000		0.0005300	Moraine-	Vallon	-1989.0000000	N/G					Vallon, M., 1989. Evolution water b	alance potential hazards and control	of a pro-glad	iallake in th	e French Alps.
Lac D'Ar		0.0590000		0.00080000	Moraine-	Vallon	-1989.0000000	N/G		NOTE:	Repetion	in HUGGE	Vallon, M., 1989. Evolution water b	alance potential hazards and control	of a pro-glad	iallake in th	e French Alps.
7 Gjanups		0.6000000		0.0200000	lce-damr	Costa an	-1988.0000000	N/G		NOTE:	Repetion	in HUGGE	Costa, J.E., Schuster, R.L., 1988.	The formation and failure of natural da	ms. Geologic	calSociety o	of America Bull
Petrov		3.9000000		0.0639600	Moraine-	Jansky	-2009.0000000	N/G					Jansky, B., Engel, Z., Sobr, M., Be-	nes, V., Spacek, K., Yerokhin, S., 200	9. The evolu	tion ofPetro	v lake and mor
Petrov		1.6300000		0.0200000	Moraine-	Sevast'ya	-1981.0000000	N/G					Sevast'yanov, D.V., Funtikov, A.B.	, 1981. Novy dannye ob evollucii vysol	kogornogo o	zerau kono	a lednika Petro
) Petrov		3.6600000		0.0534000	Moraine-	Engel	-2012.0000000	N/G	"				Engel, Z., Sobr, M., Yerokhin, S.A.	, 2012. Changes of Petrov glacier and	lits proglacia	l lake inthe	Akshiirak massi
Petrov		3.8000000		0.0592000	Moraine-	Engel	-2012.0000000	N/G	"				Engel, Z., Sobr, M., Yerokhin, S.A.	, 2012. Changes of Petrov glacier and	lits proglacia	l lake inthe	Akshiirak massi
2 Petrov		3.8800000		0.0620000	Moraine-	Engel	-2012.0000000	N/G	"				Engel, Z., Sobr, M., Yerokhin, S.A.	, 2012. Changes of Petrov glacier and	lits proglacia	l lake inthe	Akshiirak massi
3 Abmach		0.5650000		0.0194000	Moraine-	Meon and	-1993.0000000	N/G					Meon, G., Schwarz, W., 1993, Esti-	mation of glacier lake outburst flood ar	nd its impact	on ahvdro p	roject in Nepal
Quangzi		0.7530000		0.0210000	Moraine-	Meon and	-1993.0000000	N/G		NOTE:	Repetion	in HUGGE	Meon, G., Schwarz, W., 1993, Esti-	nation of glacier lake outburst flood ar	nd its impact	on ahvdro p	roject in Nepal
5 Imja		0.6000000		0.0280000	Moraine-	Yamada	-1992.0000000	N/G		NOTE:				irst Research Expedition to Imja Glaci			
Imja		0.8640000		0.0358000	Moraine-	Fujita	-2009.0000000	N/G		NOTE:				amaguchi, S., Sharma, R., 2009, Rec			
7 Imja		1.0100000		0.0355000			-2009.0000000			NOTE:				amaguchi, S., Sharma, R., 2009. Rec			
3 Thulagi		0.7600000		0.0317500			-2011.0000000			NOTE:				Mountain Development(ICIMOD) (201			
7 Thulagi		0.9400000		0.0353000			-2011.0000000			NOTE:				Mountain Development(ICIMOD) (201			
) Tsho Ro		1.6500000		0.0907500			-1992.0000000			NOTE:				irst Research Expedition to Imja Glaci			
Laguna		1.6000000		0.0750000			-1977.0000000			NOTE:				autre. A., Schneider, B., 1977, Glaciol			
Elbrus		0.0890000		0.0005500			-2007.0000000				cpedoi			rnomorets, S.S., Tutubalina, O.V., Kr			
Bashkar		0.0650000		0.0003300			-2007.00000000							rnomorets, S.S., Tutubalina, O.V., Kr			
Crusoe-		0.0030000		0.0000800			-1963,0000000			NOTE:	Repetion			ge and glacier-dammed lakes. Axel H			
Claste		3.0110000		0.0000000	ice uaill	naay	-1303.0000000	140		NOTE.	repedul		mang, m.o., 1909. marginal dialita	ge and gradier dammed rakes, Assert	enery isidi lu	ana munet, t	. (Ed.), Freillill

Field data

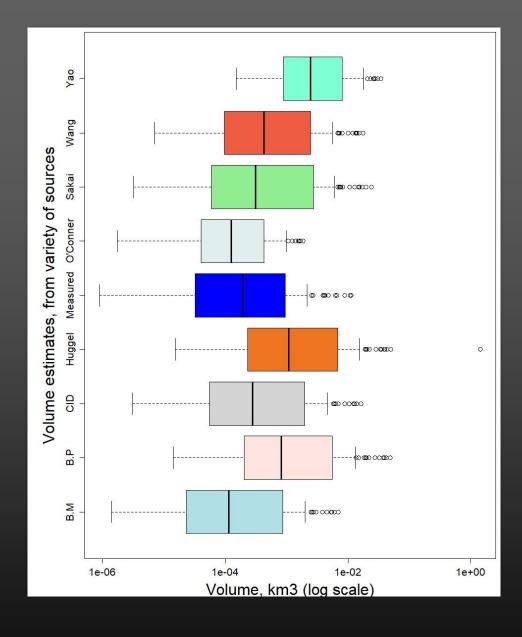
Bathymetric measurements from the field visits to Arashan lakes (2700 m.a.s.l.) and lake Kunkermes (3200 m.a.s.l.)





A)Arashan long; B) Arashan small; D) Arashan xodja; II) B) Arashan small; C) Arashan round; III) Arashan xodja; IV) Kunkermes lake

Name\Par.*	A (m²)	V (m³)	Dmax (m)	Davg (m)	Lmax (m)	Havg (m)
Arashan round	189500	1280000	21.7	6.7	527	2875
Arashan long	89000	278745	12.4	6.4	663	2768
Arashan xodja	13864	41800	7.9	1.8	187	2786
Arashan small	12750	61800	12.2	4.9	101	2876
Kunkermes	39900	25100	3.9	0.6	314	3650

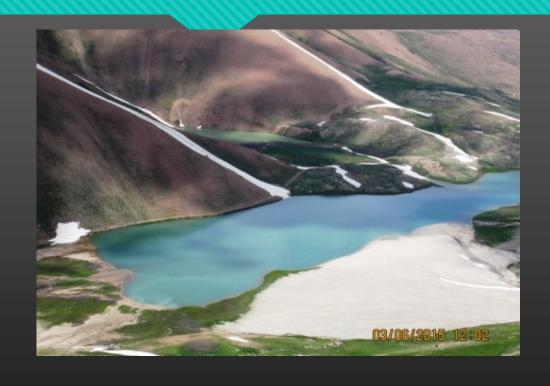

Bathymetry measurements of lakes in Central Asia. a) Arashan small; b) Arashan xodja; c) Arashan long; D) Arashan round; E) Turtkuyluk lake;

About dataset of lakes

- Data collected all over the world, Asia, South America, North America, Europe
- Described relational equations
 - O Sakai 2012, **V=43.74*A**^{1.5307} where V is 10⁶ m³ and A is in km²
 - Use in European Alps, V=0.104*A^{1.42} where V is in m³ and A is in m²
 - O Canadian Inland Water Directorate (CID) **V=0.035*A**^{1.5} where V is in 10⁶ m^{3,} and A is in km²
 - O Blagovechshenskiy in Asia for moraine-dammed lakes (B.M) **V=0.636*A^{1.489} and V=0.636*A^{1.489}** is for pro-glacial lakes (B.P), where A is in m² and V is in m³
 - O'Connor for Central Oregon Cascade which is following: **V =3.114*A+0.0001685*A²**, where V is lake volume in m³, and A is the surface area of the lake in m²
 - O Wang for moraine-dammed in Chinese Himalayas and reported the relationship between lakes volume and area **V =0.0354*A**^{1.3724} (Wang et al., 2012) where V is in km³, and A is in km²
 - O Yao for Longbasaba (multiple measuremenets) **V=0.0493*A^{0.930}**, where V is in km^{3,} and A is in km²
- 4 main types of lakes
 - Thermo carst origin
 - Moraine dammed
 - O Ice dammed
 - Landslide dammed

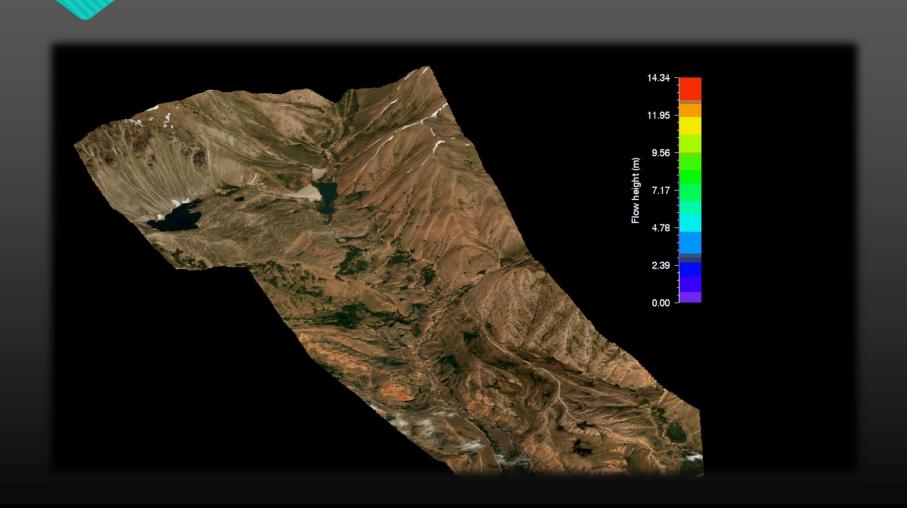
Results

Comparison of equations listed in literature review (estimation of lakes volumes) – entire dataset

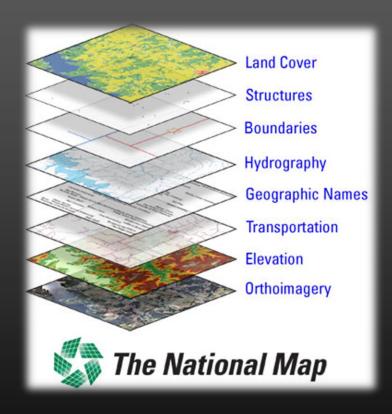

Results

EQ\(%)	Min.	1st	Median	Mean	3 rd	Max.	%(Total)
B.M	156 [†]	72	59	71 [†]	91 [†]	62 [†]	85 [†]
B.P	1589	638	423	490	587	436	694
CID	344	173	145	168	210	144	197
Huggel	1700	726	558	1808*	726	12814*	3055
M.Volume (%)	100	100	100	100	100	100	100
O'Conner	193	125 [†]	64 [†]	28	45	17	79
Sakai	356	188	162	218	290	214	238
Wang	778	303	221	196	258	155	319
Yao	16889*	2739*	1276*	513	850*	303	3762*
M.Area (m²)	2000	17100	50000	116400	157500	600000	-

It is noticeable that among observed lakes, a lake with minimum volume was equal to 900 m³ and our closest estimate overestimates it by 56 %. The area of the lake is about 2000 m².


^{*}Worst estimates between models; † Best estimates between models; CID – Canadian Inland directorate; B.M – Blagoveshenskiy for moraine dammed lakes from (Bolch et al., 2011); B.P – Blagoveshenskiy for progralacial lakes from (Bolch et al., 2011); Measured from (Glazirin, 2013; Nikitin, 1987; Petrov et al., 2017); Huggel from (Huggel et al., 2004); O'Conner from; Sakai from (Sakai et al., 2000); Wang from (Wang et al., 2012); Yao from (Zhang et al., 2015);

History of outburst: Arashan lakes

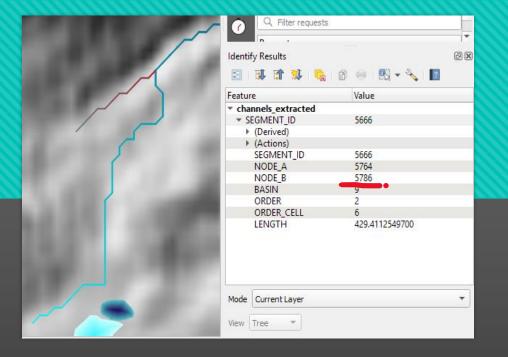


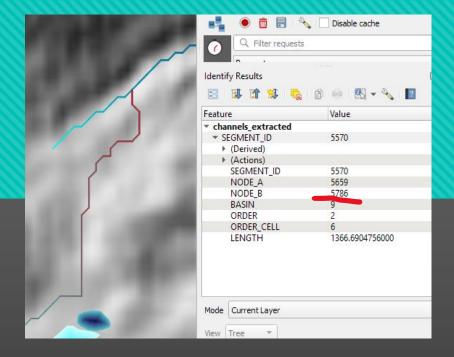
Volume => Hydrograph => Peak discharge & modeling

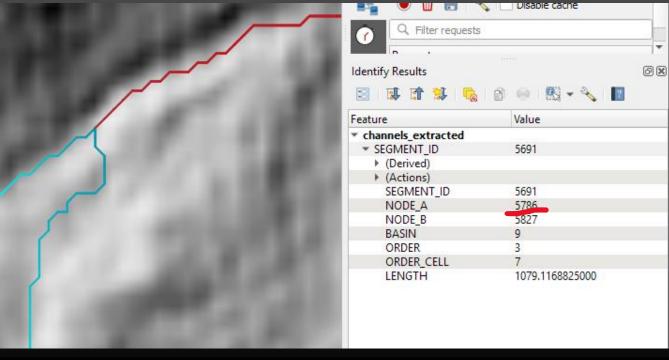
Seamless GIS modeling, can we do it?

- 1. Rasterized format of information
- 2. Elevation accumulation layer
- 3. River network, from unique flowline to unique flowline ordered downstream
- 4. Database with flowlines, and related properties of basins upstream, accumulated (Impervious surfaces, soil water capacity, slopes, roughness, proportion of a discharge, land cover types, number of lakes)
 - 1. Large scale, multidimensional modeling of an event
 - 2. Assessment of not only lakes, but the entire basin
 - 3. With integration of RS this process can be dynamic

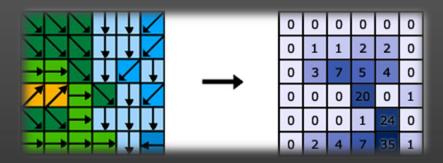
https://en.wikipedia.org/wiki/The_National_Map


River network, Strahler order




- 1. Unique Reach ID
- 2. To Node ID
- 3. From Node ID

Vector features faster to compute and manage, easy access to watershed delination, raindrop trace tools


Extract rasterized information for a flowline vector (Upstream area, soil and landcover properties, surface temperatures other.)

Flow accumulation

MODIS Land Products

MODIS Surface Reflectance

MODIS Land Surface Temperature and Emissivity (MOD11)

MODIS Land Surface Temperature and Emissivity (MOD21)

MODIS Land Cover Products

MODIS Vegetation Index Products (NDVI and EVI)

MODIS Thermal Anomalies - Active Fires

MODIS Fraction of Photosynthetically Active Radiation (FPAR) / Leaf Area Index (LAI)

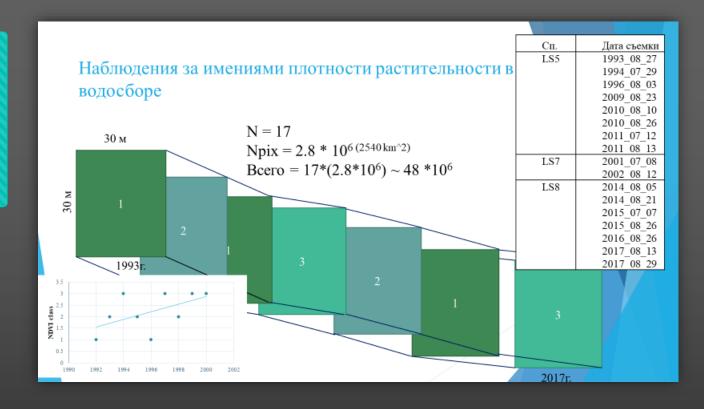
MODIS Evapotranspiration

MODIS Gross Primary Productivity (GPP) / Net Primary Productivity (NPP)

MODIS Bidirectional Reflectance Distribution Function (BRDF) / Albedo Parameter

MODIS Vegetation Continuous Fields

MODIS Water Mask


MODIS Burned Area Product

- 1. One of the best temporal/spatial resolutions for grid products
- 2. Field data

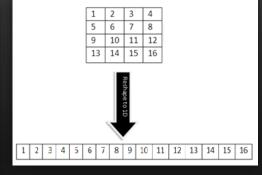
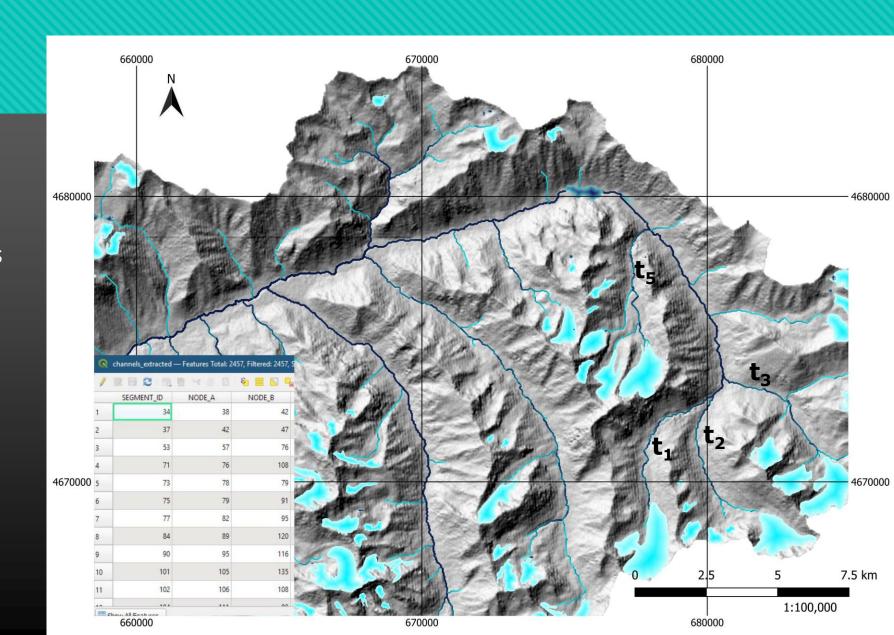

Methods: pixel to pixel assessment of changes

Image – pixel to pixel statistical analysis of changes occurring on the surface of basin

Combination of non-parametric methods of trend detection and remote observations

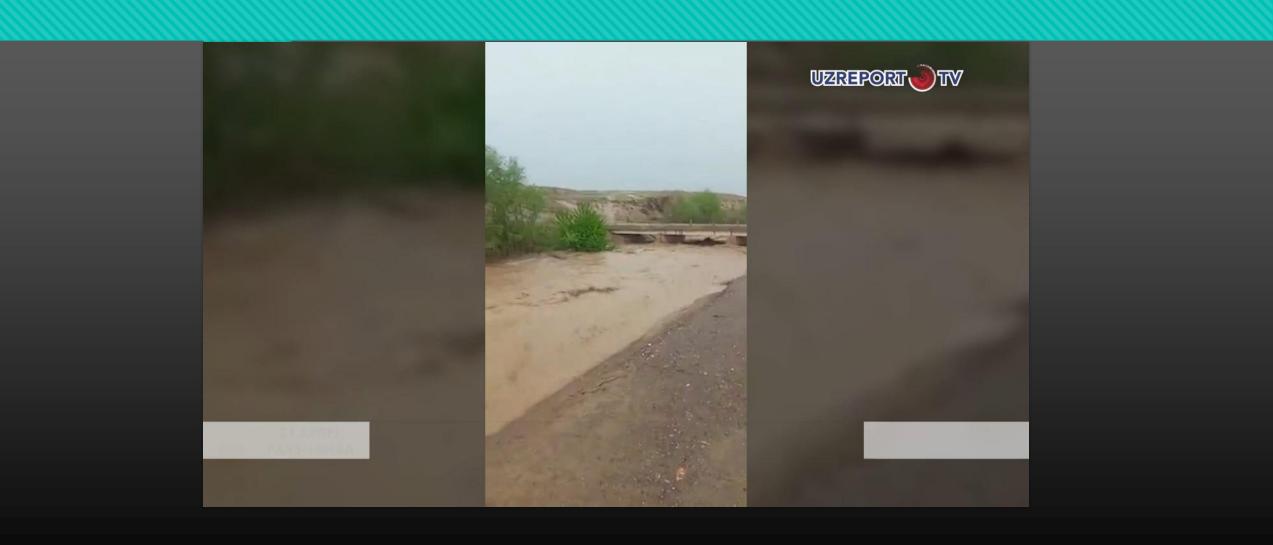


4	8	7	4	4	1	8	3	7	6
1	7	9	3	4	4	8	9	7	9
7	7	2	2	7	7	6	6	7	7
6	9	6	2	3	7.	.9	8	.9	2
3	5	9	5	4	5	8	8	9	3
3	6	8	9	3	8	7	3	9	8
6	8	1	2	1	7	1	Ť.	3	4
4	3	4	8	9	5	3	3	4	3
6	4	4	1	7	7	8	7	2	1
5	1	6	9	14	6	9	9	1	1

Multiple reaches will have various travel times of mudflow (upstream accumulation area, various slopes, various velocity, discharges)

It takes some time before the mudflow or any impact to arrive. We could compute the arrival time after the event. We can model height, velocity, pressure gradients etc.

Live events, April – May, 2022


- Djizakh expiriensed unusualy heavy rains, 10% of annual sum of precipitation in a two hours
 -> mountain area
- Multiple little slope failures triggered mudflow event
- By the time it reached populated areas, mudflow had at least 90 cms

Djizakh event (April 20th)

Summary

Studies were present from the past that show interest in glacial forms, glaciers and glacial lakes from early 20th century for the region of Central Asia. In the last few decades bigger attention directed towards possible hazard to downstream population, lakes were studied and the bigger one were analyzed in the field. However, there are so many lakes with smaller areas and volume, but the hazard in the events of extreme weather conditions and various impacts is present. Here in Uzbekistan, we are looking to the ways to collect information, not only about lakes but the surround and upstream areas, as well about downstream conditions, cover bigger areas with RS and create seamless GIS database in order to model possible large scale events that would have effect on bigger area and impact number of lakes, watersheds. Such knowledge would help to separate regions with bigger hazard and impact potential and will make it easier to control and direct studies in the future.

Thank you for your attention!
Questions ?

References

- Blagovechshenskiy, V., Kapitsa, V., Kasatkin, N., 2015. Danger of GLOFs in the Mountain Areas of Kazakhstan. J. Earth Sci. Eng. 5, 182–187.
 - Bolch, T., Peters, J., Yegorov, A., Pradhan, B., Buchroithner, M., Blagoveshchensky, V., 2011. Identification of potentially dangerous glacial lakes in the northern Tien Shan. Nat. Hazards 59, 1691–1714. https://doi.org/10.1007/s11069-011-9860-2
- Cook, S. j. (1), Quincey, D. j. (2), 2015. Estimating the volume of Alpine glacial lakes. Earth Surf. Dyn. 3, 559–575. https://doi.org/10.5194/esurf-3-559-2015
 - Erokhin, S.A., Zaginaev, V.V., Meleshko, A.A., Ruiz-Villanueva, V., Petrakov, D.A., Chernomorets, S.S., Viskhadzhieva, K.S., Tutubalina, O.V., Stoffel, M., 2017. Debris flows triggered from non-stationary glacier lake outbursts: the case of the Teztor Lake complex (Northern Tian Shan, Kyrgyzstan). Landslides 1–16.
- Evans, S. g., 1986. Landslide damming in the Cordillera of western Canada. Am. Soc. Civ. Engrs.
- OGlazirin, G., 2013. Key locations of naturally dammed lakes in Uzbekistan. Shak. Verl. 3–20.
- Huggel, C., Haeberli, W., Kääb, A., Bieri, D., Richardson, S., 2004. An assessment procedure for glacial hazards in the Swiss Alps. Can. Geotech. J. 41, 1068–1083.
- Under the Swiss Alps. Can. Huggel, C., Kääb, A., Haeberli, W., Teysseire, P., Paul, F., 2002. Remote sensing based assessment of hazards from glacier lake outbursts: A case study in the Swiss Alps. Can. Geotech. J. 39, 316–330. https://doi.org/10.1139/t01-099
- Complex of the structure of the struc
- O Loriaux, T., Casassa, G., 2013a. Evolution of glacial lakes from the Northern Patagonia Icefield and terrestrial water storage in a sea-level rise context. Glob. Planet. Change 102, 33–40. https://doi.org/10.1016/j.gloplacha.2012.12.012
- O Loriaux, T., Casassa, G., 2013b. Evolution of glacial lakes from the Northern Patagonia Icefield and terrestrial water storage in a sea-level rise context. Glob. Planet. Change 102, 33–40.
- Mann, H.B., Whitney, D.R., 1947. On a Test of Whether one of Two Random Variables is Stochastically Larger than the Other. Ann. Math. Stat. 18, 50–60. https://doi.org/10.1214/aoms/1177730491
- Nikitin, A., 1987. Ozera Credney Azii. Gidrometeorologicheskiy regim ozer I vodohranilisch SSSR. Leningr. Gtdrometeoizdat 106.
- O'connor, J.E., Hardison, J.H., Costa, J.E., 2001. Debris flows from failures of Neoglacial-Age Moraine dams in the Three Sisters and Mount Jefferson Wilderness Areas, Oregon. US Geol. Surv. Prof. Pap. 1–93.
- Petrov, M.A., Sabitov, T.Y., Tomashevskaya, I.G., Glazirin, G.E., Chernomorets, S.S., Savernyuk, E.A., Tutubalina, O.V., Petrakov, D.A., Sokolov, L.S., Dokukin, M.D., others, 2017. Glacial lake inventory and lake outburst potential in Uzbekistan. Sci. Total Environ. 592, 228–242.
- Sakai, A., 2012. Glacial lakes in the Himalayas: a review on formation and expansion processes. Glob. Environ. Res. 16, 23–30.
- Sakai, A., Chikita, K., Yamada, T., 2000. Expansion of a Moraine-Dammed Glacial Lake, Tsho Rolpa, in Rolwaling Himal, Nepal Himalaya. Limnol. Oceanogr. 45, 1401–1408.
- Shapiro, S.S., Wilk, M.B., 1965. An analysis of variance test for normality (complete samples). Biometrika 52, 591–611. https://doi.org/10.1093/biomet/52.3-4.591
- Wang, X., Liu, S., Ding, Y., Guo, W., Jiang, Z., Lin, J., Han, Y., 2012. An approach for estimating the breach probabilities of moraine-dammed lakes in the Chinese Himalayas using remote-sensing data. Nat Hazards Earth Syst Sci 12, 3109–3122. https://doi.org/10.5194/nhess-12-3109-2012
- Yao, X.(1,2), Liu, S.(1), Sun, M.(1), Wei, J.(1), Guo, W.(1), 2012. Volume calculation and analysis of the changes in moraine-dammed lakes in the north Himalaya: A case study of Longbasaba lake. J. Glaciol. 58, 753–760. https://doi.org/10.3189/2012JoG11J048
- O Zhang, G., Yao, T., Xie, H., Wang, W., Yang, W., 2015. An inventory of glacial lakes in the Third Pole region and their changes in response to global warming. Glob. Planet. Change 131, 148–157. https://doi.org/10.1016/j.gloplacha.2015.05.013