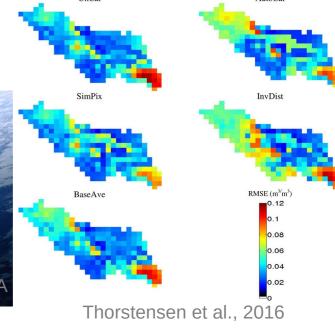


Hydrological signatures to derive process knowledge from in situ soil moisture data

Ryoko Araki, <u>Flora Branger</u>, Inge Wiekenkamp, and Hilary McMillan

Session HS2.2.4: Improving hydrological process understanding and model prediction using soil moisture data 24th May 2022

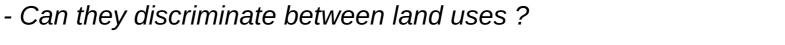




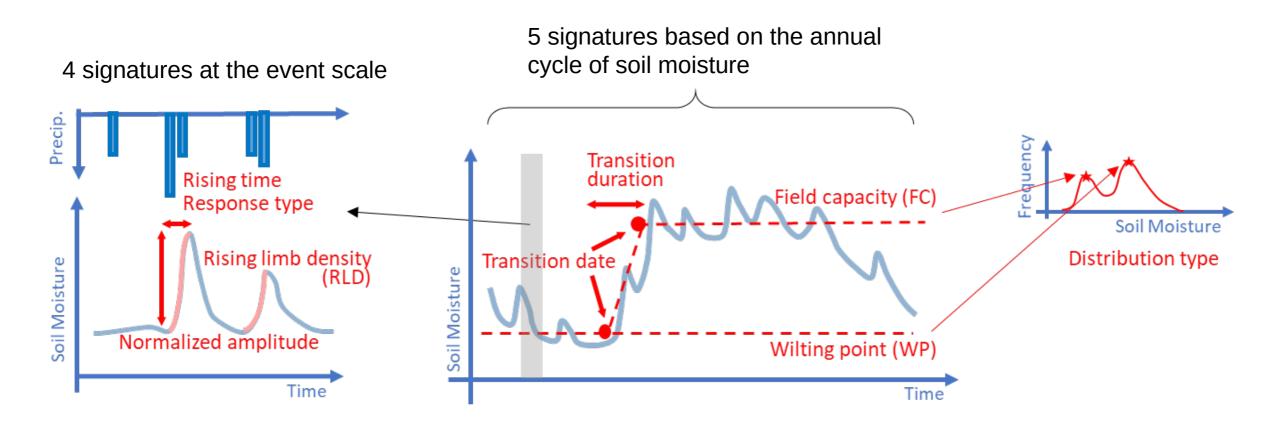
Using in situ soil moisture data in hydrology

Soil Moisture is a critical control of hydrologic response In situ observation has many potential applications But data are not easily (and therefore still rarely) used

F. Branger @ INRAE



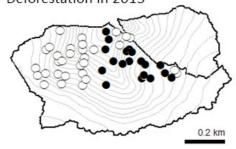
How to extract information from in situ soil moisture observations?


Hydrological signatures quantify & standardize hydrological expertise

Set of 9 signatures based on soil moisture data, applied to 6 study sites around the world:

- Can they provide a clear view of dominant processes on a given site?

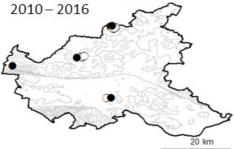
Set of soil moisture signatures at 3 temporal scales


Based on Branger & McMillan (2020), added signatures from Chandler et al. (2017), Graham & Lin (2011), and Sawicz *et al.* (2011)

Study sites & data

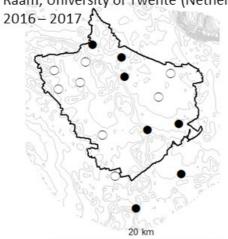
WB

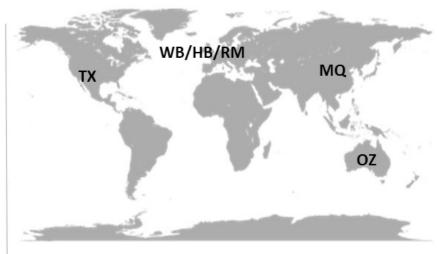
Forested vs. Deforested


Wustebach, TERENO (Germany) 2009 – 2018 Deforestation in 2013

HB

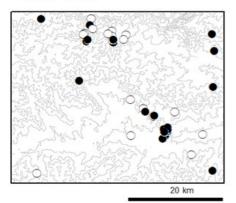
Greenspace vs. Housing


Hamburg Urban Soil Climate Observatory (Germany)

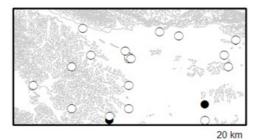


RM

Deep vs. Shallow groundwater

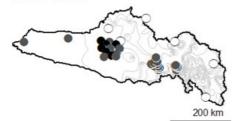

Raam, University of Twente (Netherland)

TX Ungrazed vs. Grazed


TxSON (US) 2014 – 2019

MQ

Non-wetland vs. Wetland


Maqu (China) 2008 – 2010

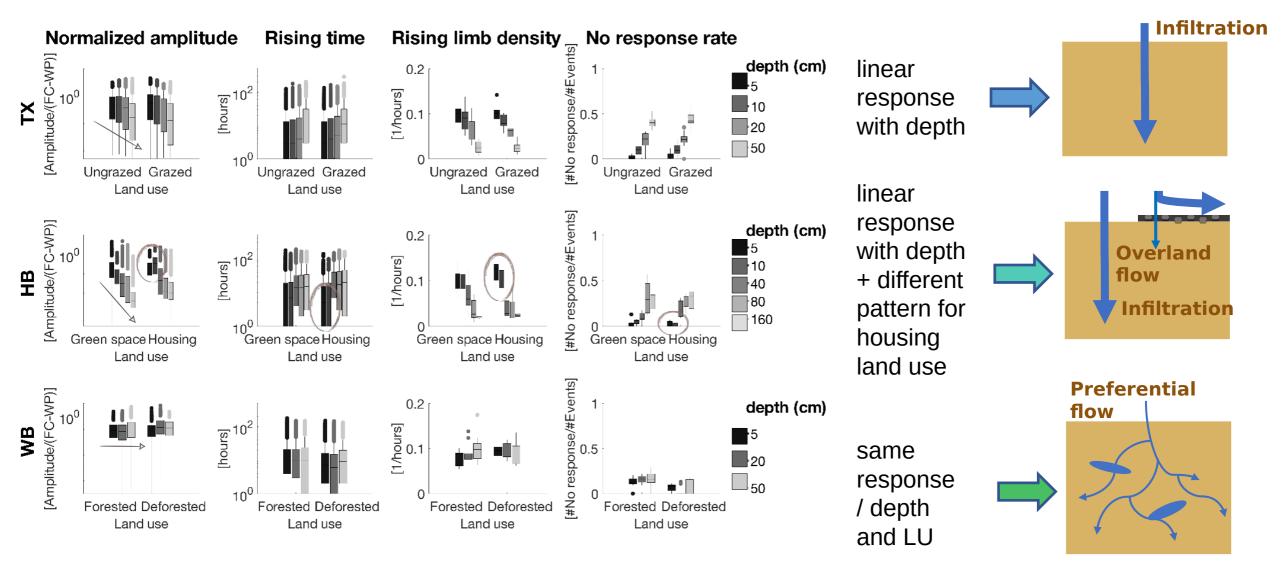
ΟZ

Grass vs. Grazed vs. Crop

OzNET (Australia) 2001 – 2019

Legend

Site abbreviation


Land-use

Observatory (country)

Observation period

- Watershed / network extent
- Elevation contour (interval varies)
- O Sensors (undisturbed land-use)
- Sensors (disturbed land-use)

Example of results for event-based signatures: water flow pathways

Clear identification of dominant processes + discrimination of land use

Summary & Recommendations

	Signature performance				Signature applicability		
Signature type	Extraction	Dynamics with depth	Dynamics between land-uses	Interpretation	Model calibration & evaluation	Remote sensing data accuracy assessment	Observation data analysis
Event Rising time Response type Rising limb density (RLD)						Not enough time-resolution & measurement	
Season Transition date		Not statistically significant		Poor in arid climate & multiple interpretation		depth	Difficulty in interpretation
Time Year Hed capacity (FC) Wilting point (WP) Time	Susceptible to data quality					Susceptible to data quality	

For more information

Contact : Ryoko Araki : raraki8159 (at) sdsu.edu

Repository for Signatures calculation code: https://github.com/RY4GIT/Soil-moisture-signatures-Matlab-ver (Matlab version, R version coming soon)

Araki, R., Branger, F., Wiekenkamp, I., & McMillan, H.K., 2022. A signature-based approach to quantify soil moisture dynamics under contrasting land-uses. Hydrological Processes 36 (4) e14553. DOI: https://doi.org/10.1002/hyp.14553

Gnann, S.J., Coxon, G., Woods, R.A., Howden, N.J.K., McMillan H.K., 2021. TOSSH: A Toolbox for Streamflow Signatures in Hydrology. Environmental Modelling & Software. DOI: https://doi.org/10.1016/j.envsoft.2021.104983

Branger F, McMillan H.K. (2020). Deriving hydrological signatures from soil moisture data. Hydrological processes 34 (6): 1410–1427 DOI: https://doi.org/10.1002/hyp.13645

Wiekenkamp I, Huisman JA, Bogena HR, Lin HS, Vereecken H. 2016. Spatial and temporal occurrence of preferential flow in a forested headwater catchment. Journal of Hydrology 534: 139–149 DOI: https://10.1016/j.jhydrol.2015.12.050