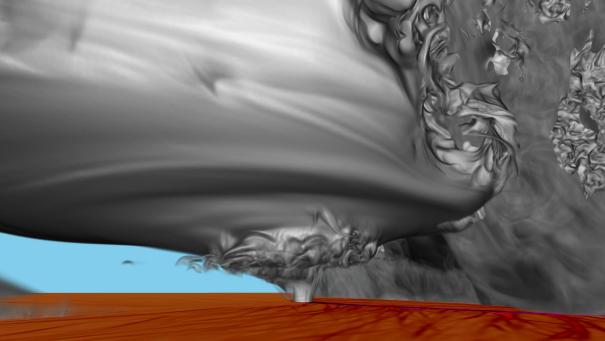
Lossy compression in violent thunderstorm simulations: Lessons learned and future goals

Leigh Orf and Kelton Halbert


Cooperative Institute for Meteorological Satellite Studies
Department of Atmospheric and Oceanic Sciences
University of Wisconsin - Madison

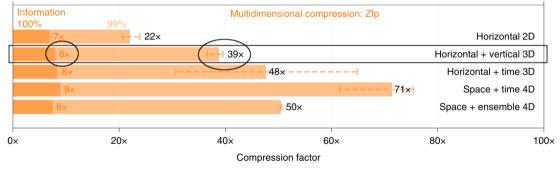
2022 EGU General Assembly (virtual) Vienna. Austria

25 May 2022

Atmospheric research goal: Understanding tornadoes in (simulated) thunderstorms

- Our research involves conducting tornado-resolving thunderstorm simulations on supercomputers using a numerical model
- Saved data may be analyzed for years, even for a simulation that only takes days
- Post-processing and visualization will require significantly modest hardware compared to what was required to run the simulation
- High temporal frequency saves of full-resolution data is required in order to capture rapidly changing flow fields associated with tornadoes

Lack Of a File System (LOFS)

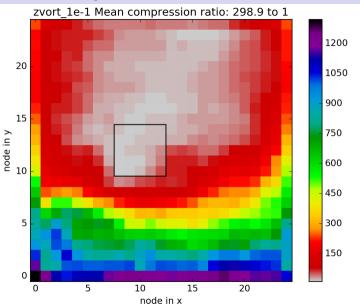

- Default save options for CM1 model do not scale well to large core counts (I/O becomes a severe bottleneck)
- I realized a different approach to I/O was needed, and after several iterations, I developed what I call LOFS (Lack Of a File System, so named because it's a file-based file system)
- The goal of writing to LOFS is to remove the I/O bottleneck while saving 3D data frequently to enable many years of post hoc analysis

Identifying "false information" in NWP data (Klöwer et al)

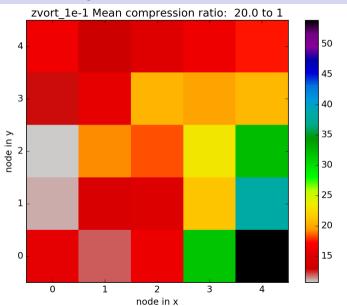
Klöwer, M., M. Razinger, J. J. Dominguez, P. D. Düben, and T. N. Palmer, 2021:

Compressing atmospheric data into its real information content. Nature

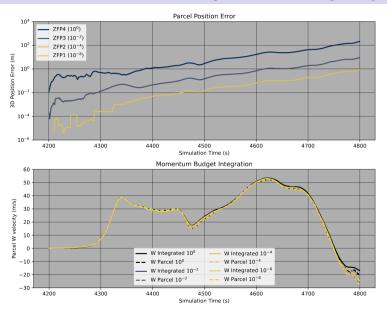
Computational Science, 1, 713–724. http://dx.doi.org/10.1038/s43588-021-00156-2


• 99% of information is preserved with \sim 40:1 compression ratios

LOFS


- LOFS files are HDF5, written serially, but concurrently to the parallel file system, 1 HDF5 file per shared-memory node per disk save
- Multiple (e.g., 50-100) time levels are buffered before flushing to disk, with files being grown in memory using the HDF5 core driver
- Lossy floating point compression (ZFP) is used for all 3D data, drastically reducing I/O as compared to lossless/uncompressed

- We compress as much as possible, and save only what is needed to calculate all other diagnostic quantities
- Diagnostic calculations are available as read options, calculated on the fly from (ZFP compressed) LOFS saved data
- Utilize multicore architectures for diagnostic calculations, parallelize all calculations in time (embarrassingly parallel) - "high throughput" computing
- This approach is designed to reduce I/O and to minimize the size of the data on disk
- Saving only subdomains saves a LOT of space


ZFP compression ratios as a function of LOFS file

ZFP compression ratios as a function of LOFS file

Error associated with ZFP compression (Lagrangian parcels)

Lessons Learned

- 1. On supercomputers, I/O can easily be a huge bottleneck
- 2. Dealing head-on with the I/O bottleneck can enable breakthrough scientific discoveries in some situations
- 3. We modelers should all be using lossy floating point compression!
- You can get away with a surprisingly high amount of compression and still come to the same scientific conclusions
- 5. You *can* overdo it, however!!

Future Goals

- 1. Explore 4D compression with ZFP
- Find appropriate fixed-accuracy parameter for a wide amount of variables / situations
- 3. Increase performance for large HPC runs
- 4. Write Python driver/module for LOFS format ('import lofs')

Acknowledgments

Simulations and visualizations conducted on the NSF-sponsored Blue Waters and Frontera supercomputers. Leigh Orf is supported by NSF grants AGS-1832327, OAC-1663954, AGS-2114757 and the Space Science and Engineering Center at the University of Wisconsin.

Collaborators on this and related projects: Dr. Catherine Finley (UND); Dr. Bruce Lee; Dr. Matthew Turk (NCSA); Drs. Lawrence Frank and Vitaly Galinsky (UCSD); Hank Schyma ("Pecos Hank"), storm videographer from Houston; Kelton Halbert, UW grad student

LOFS code, documentation:

https://lofs.io https://github.com/leighorf/cmlr19.8-LOFS https://github.com/leighorf/LOFS-read Peter Lindstrom's ZFP: https://computing.llnl.gov/projects/zfp See https://orf.media to access high quality video files of many simulations saved with ZFP compressed data.