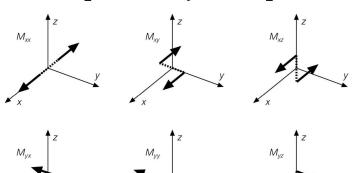
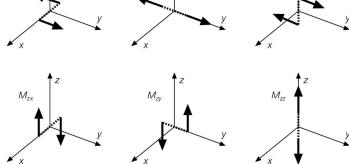
A Joint Point-source Moment Tensor and a Single Force Inversion Within Hierarchical Bayesian Inference for Revealing the Source Mechanism of Underground Nuclear Explosions

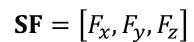
Jinyin Hu, Thanh-Son Phạm, Hrvoje Tkalčić

Research School of Earth Sciences, Australian National University

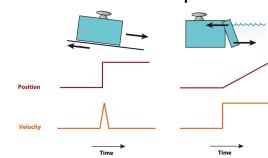



jinyin.hu@anu.edu.au, thanhson.pham@anu.edu.au, hrvoje.tkalcic@anu.edu.au

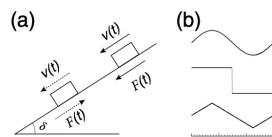

# Two problems to solve in this study for seismic source inversion


# 1. A generalized source representation.

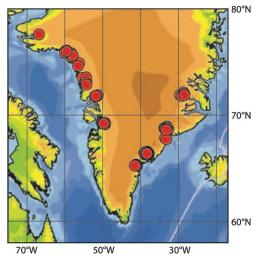
Combine Moment Tensor (MT) and Single Force (SF)


$$\mathbf{MT} = \begin{bmatrix} M_{xx} & M_{xy} & M_{xz} \\ M_{yx} & M_{yy} & M_{yz} \\ M_{zx} & M_{zy} & M_{zz} \end{bmatrix}$$

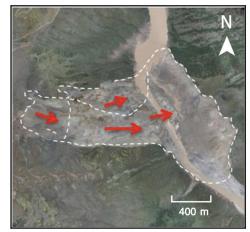








Glacier Earthquakes




Landslides



Typical force function's



Nettles and Ekström, 2010



Sheng et al., 2020

# Two problems to solve in this study for seismic source inversion

### 2. Uncertainty estimate including:

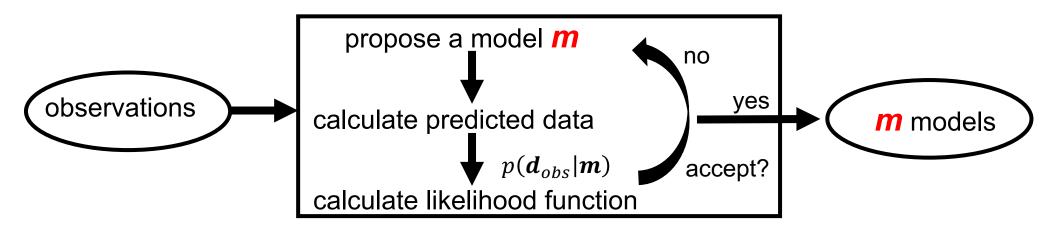
#### a) Data noise.

Several noise models have been proposed, e.g.,

- Gaussian or an exponentially decaying noise model (e.g., Bodin et al., 2012; Duputel et al., 2012),
- Empirical noise model from data residuals (e.g., Dettmer et al., 2007) and from synthetic noise series (e.g., Gouveia & Scales, 1998; Piana Agostinetti & Malinverno, 2010; Sambridge, 1999)
- Two-attenuated cosine functions from pre-event ambient noise (Mustać & Tkalčić, 2016; Mustać et al., 2018)

We only consider the uncorrelated noise measured by a percent of RMS of ambient noise

#### b) The structural error from the imperfect Earth's structure.


- e.g., Duputel et al., 2012; Hallo & Gallovič, 2016; Tarantola & Valette, 1982, Yagi & Fukahata, 2011
- Treating data noise and 1D structural errors jointly (e.g., Pham & Tkalčić,, 2021; Vasyura-Bathke et al., 2021).

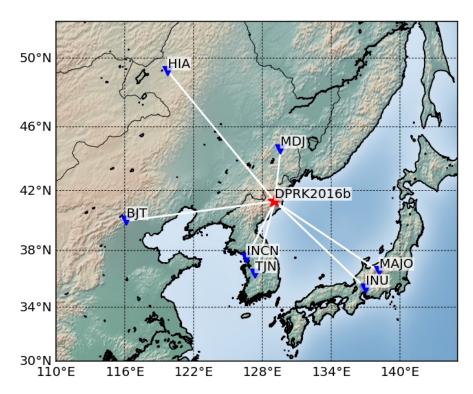
Use **time shifts** between observations and predictions to treat 2D structural error by an inversion manner as a transition from 1D structural error to 3D structural error.



# Join MT and SF Inversion Within Hierarchical Bayesian Inference






$$\boldsymbol{m} = \begin{bmatrix} M_{xx}, M_{yy}, M_{zz}, M_{xy}, M_{xz}, M_{yz}; F_x, F_y, F_z; & k_1, \cdots k_n; & t_1, \cdots t_n \end{bmatrix}$$
MT source SF source (n: number of station)

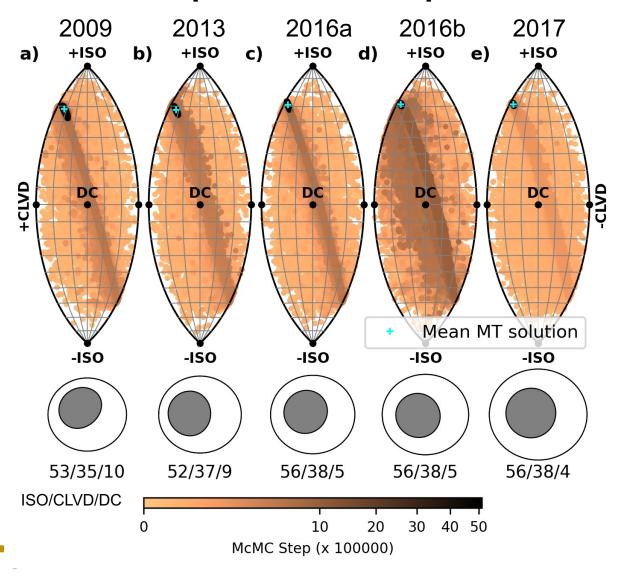
Our method considers both data noise  $(k_i)$  and 2D Earth's structural error  $(t_i)$ .



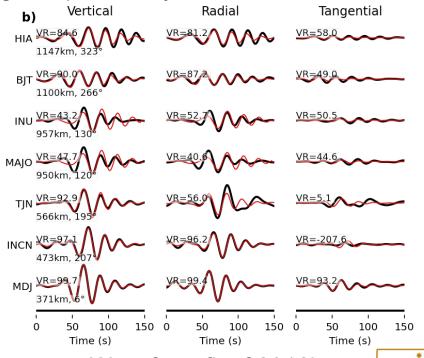
# **Applications for DPRK explosions 2009-2017**

## ☐ Single force does not play significant role in these explosive sources




- Depth=0.5 km, 20-50 s period band
- MDJ2 velocity model (Ford et al., 2009)
- emcee for Bayesian inversion

Waveform comparisons for 2016b test Vertical Radial **Tangential** SF source 100 150 0 100 100 150 150 0 50 50 Time (s) Time (s) Time (s)


emcee — A pure-Python implementation of Affine Invariant Markov chain Monte Carlo (MCMC) Ensemble sampler. (Goodman & Weare, 2010; Foreman-Mackey et al., 2013)

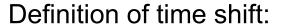
# MT inversions for DPRK explosions 2009-2017

### **□**Similar source process of 5 explosions.



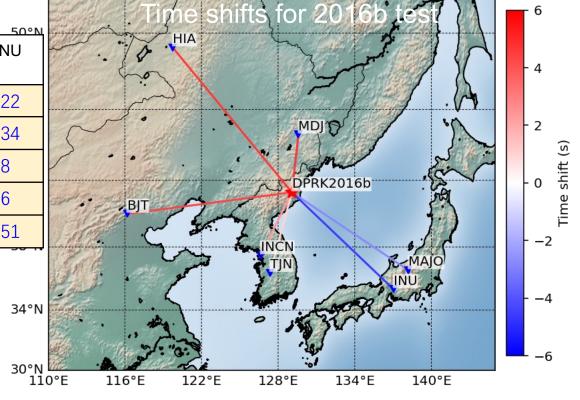
- This method explore the whole Lune diagram of source type (Tape & Tape, 2012)
- MT solutions converge to the area of the highest probability




Waveform fit of 2016b test

# MT inversions for DPRK explosions 2009-2017

### ☐ Consistency of time shifts and 2D structure


Recovered time shits for 2009-2017 explosions

| Explosions | IC.MDJ | IC.BJT | IC.HIA | IU.INCN | KG.TJN | IU.MAJO | G.INU |
|------------|--------|--------|--------|---------|--------|---------|-------|
| 2009       | 3.64   | 4.52   | 3.03   | 2.95    |        | -2.7    | -4.22 |
| 2013       | 4.06   | 3.55   | 3.3    | 2.41    | 2.05   | -2.54   | -4.34 |
| 201601     | 4.09   | 4.4    | 4.35   | 2.43    | 1.54   | -2.9    | -4.8  |
| 201609     | 4.72   | 4.4    | 4.68   | 2.39    | 0.96   | -2.73   | -4.6  |
| 2017       | 3.64   | 3.69   | 3.92   | 1.49    | 0.64   | -3.61   | -5.51 |



Positive: the MDJ2 velocity is faster

Negative: the MDJ2 velocity is slower



☐ Noise parameters weight stations' contributions differently.

Result in a higher ISO component, which is important in explosion analysis.



# **Summary**

- ➤ We developed a Bayesian source inversion for joint moment tensor and single force source.
- This method considers both uncorrelated data noise and Earth's 2D structural error. The 2D structural error is treated as the time shifts between observations and predictions by an inversion manner.

➤ We are conducting applications on real data e.g., Earthquakes, DPRK nuclear tests, and volcano eruptions, etc. More investigations for the preliminary results are still ongoing.

# Thank you!

