VALIDATING ENVI-MET FOR RELATIVE HUMIDITY (RH) IN HIGH-DENSITY TEMPORARY ENCROACHMENT SPACES IN THE STREETS OF TROPICAL INDIAN MEGACITIES

SHREYA BANERJEE¹, ARIANE MIDDEL^{2,3}, SUBRATA CHATTOPADHYAY⁴

¹Office of Core Curriculum, Singapore Management University, Singapore

²School of Arts, Media and Engineering (AME), Arizona State University, AZ, United States

³School of Computing and Augmented Intelligence, Arizona State University, AZ, United States

⁴ Department of Architecture & Regional Planning (ARP), Indian Institute of Technology Kharagpur, West Bengal, India

CL 3.2.1: Urban climate, urban biometeorology, and science tools for cities

NEED OF THE STUDY

- Although human thermal exposure in cities has been studied across the globe, microclimatic and <u>biometeorological conditions in mixed-used spaces</u>, <u>informal economic activity settings</u>, <u>and informal settlements</u> have received little attention with <u>negligible studies</u> conducted (Khalil et al., 2018), (Baruti and Johansson, 2018).
- We present an analysis of <u>outdoor thermal comfort</u> and <u>microclimate</u> for <u>informal micro-entrepreneurial communities</u> in <u>Kolkata and Mumbai</u>.
- Both cities belong to the <u>Aw Köppen Climate Classification</u>, tropical hot and dry or Savannah climate. Due to excessive humidity, <u>uncomfortable</u> <u>thermal conditions persist year-round</u> in both cities.

RESEARCH OBJECTIVE

- What is the influence of different micro enterprises or small businesses on outdoor microclimate in neighbourhoods in hot-humid context of Indian megacities?
 - To analyze how accurate the 3D CFD software ENVI-met 4.4 models microclimate associated with thermal comfort for an informal economic activity neighborhood in Indian megacity
 - Validation of Relative Humidity (RH) This presentation
 - Validation of Air Temperature (Ta) and Mean Radiant Temperature (Tmrt)
 - To analyze the impact of space transformations related to micro-enterprises on outdoor microclimate by modelling and comparing sites with and without encroachment

SURVEY CITY: MUMBAI

CHARACTERISTICS: MUMBAI

- Mumbai (18°58'N and 72°49'E)
- Largest metropolis in India with a core population of 12.5 million according to the 2011 Census
 of India
- Most important city in the country due to its location, industry, and economy
- Warm humid climate classified under the Köppen climate category Aw signifying tropical wet and dry climate (Kottek et al., 2006)
- Due to the proximity of the Arabian Sea, the city receives <u>significant monsoon wind and</u> <u>precipitation during summertime.</u>
- The city has an annual mean temperature of 27.2°C
- Summers are hot and humid with an average temperature between 30°C-35°C
- Summertime high sometimes reaches 40°C during April and May with a humidity over 75%. Winters are mild and moderate.

SURVEY CITY: KOLKATA

SURVEY CITY: KOLKATA

- Kolkata (22°34′N, 88°22′E)
- Third-largest metropolis in India with a core population of 4.5 million according to the 2011 Census of India.
- Most important city in Eastern India due to its location, industry, and economy.
- As the city is close to the <u>Tropic of Cancer and the Hooghly River, Kolkata has a warm humid climate classified as Aw (tropical wet and dry) in the Köppen climate classification (Kottek et al., 2006), (Chatterjee et al., 2019).</u>
- Due to the proximity of the Bay of Bengal, the city receives <u>significant monsoon winds and precipitation</u> <u>mostly during summertime</u>.
- Kolkata has an annual mean air temperature (T_a) of 26.8°C. Summers are hot and humid with an average T_a of 30-35°C.
- Summertime maximum T₂ reaches 40°C during the month of May, relative humidity (RH)> 70%.
- April to June are considered summer with May and June being the hottest months.
- November to February are considered winter, which is mild and moderate with an average T_a of 25-30°C and an average RH of 60%. Wintertime minimum T_a seldom reaches 10-14 °C in January

SURVEY: NEIGHBOURHOOD VISUALS

SIMULATION METHODOLOGY: ENVI-MET

- Simulations were performed for all the neighborhoods for summer and winter and two cases, one existing encroachment case and another without encroachment hypothetical case.
- Thus, for each neighborhood, a total of 4 simulations were carried out.

- All the simulations were typically performed for a 12-hour duration from 5 AM to 5
 PM.
- We discarded the first four simulated hours from the final analysis as they were used as spin up time (Taleghani et al., 2015), (Sharmin, Steemers and Matzarakis, 2017).

SIMULATION METHODOLOGY: ENVI-MET

All the Kumbhadwada models were simulated on a system (notebook laptop) with Intel Core i5-8250 CPU and 24 GB RAM. Each simulation took around 12 days to be completed.

All the other simulations were performed in a system (workstation) with Intel Xeon Silver 4210 CPU and 32 GB RAM.

Each simulation in Fashion Street, Boipara and Kumartuli took around 8 days to be completed.

Each simulation in Dadar and Mallickghat took approximately 3 days to be completed.

Validation was carried out with the data collected from field measurements after (Banerjee et al., 2021)

SIMULATION METHODOLOGY: AREA INPUT 3D FOR MUMBAI

3D Area Input File for Fashion Street, Mumbai

3D Area Input File for Dadar Flower Market, Mumbai

3D Area Input File for Kumbhadwada, Mumbai

SIMULATION METHODOLOGY: AREA INPUT 3D FOR KOLKATA

3D Area Input File for Boipara, Kolkata

3D Area Input File for Mallickghat, Kolkata

3D Area Input File for Kumartuli

RESULTS

ANALYSIS: VALIDATION RESULTS IN MUMBAI

		Fashio	n Street		Dac	lar Flov	ver Mark	æt	Kumbhadwada							
		Shallow C	Canyon Tota	Shallow			Deep				Shallov	v	Deep			
	R ²	d	MBE	RMSE	R^2	d	MBE	R ²	d	MBE	R^2	d	MBE	R^2	d	MBE
RH	0.96	0.98	-15.04	15.16	0.98	0.99	4.75	0.96	0.99	-4.41	0.93	0.99	-2.32	0.74	0.99	-3.01

		Fashion Street							adar Flo	wer M a	ırket		K umbhadwada							
		Winter			Summer			Winter			Summer			Winter			Summer			
	RMSE	d	MBE	RMSE	d	MBE	RMSE	d	MBE	RMSE	d	MBE	RMSE	d	MBE	RMSE	d	MBE		
RH	14.96	0.97	-14.76	15.34	0.98	-15.33	10.89	0.98	0.75	1.40	0.99	0.06	15.12	0.97	-14.68	6.96	0.99	6.55		

VALIDATION OF RELATIVE HUMIDITY IN MUMBAI

KOLKATA

ANALYSIS: VALIDATION RESULTS IN KOLKATA

	Boipara								Mallic	kghat		Kumartuli							
	Shallow			Deep			Shallow			Deep			Shallow			Deep		P	
	R ²	d	MBE	R^2	d	MBE	R^2	d	MBE	R^2	d	MBE	R^2	d	MBE	R^2	d	MBE	
RH	0.68	0.98	15.51	0.08	0.98	16.21	0.77	0.99	4.94	0.59	0.98	11.97	0.99	0.99	9.64	0.84	0.99	10.43	

	Boipara								Mallic	kghat	Kumartuli					
	Winter			Sum	ımer			Winter		Summer			Winter		Summe	r
	RMSE	d	MBE	RMSE	d	MBE	RMSE	d	MBE	RMSE	d	MBE	RMSE/d/MBE	RMSE	d	MBE
RH	16.46	0.98	16.07	16.46	0.98	15.59	3.77	0.99	0.48	15.72	0.98	15.31		10.92	0.99	9.98

ANALYSIS: VALIDATION RESULTS IN KOLKATA

COMMON ANALYSIS

- Negligible studies have validated RH so far.
- ENVI-met thoroughly overestimates RH
- This agrees with Huttner who reported an overestimation of RH by ENVI-met during the day hours (Huttner, 2012).
- This deviation can be attributed to the fact that the assumption of the boundary conditions such as a neutrally stratified atmosphere is not always valid in cities with strong radiative input such as Kolkata and Mumbai (Huttner, 2012).
- RH can predict the RH within shallow canyon better.
- Similar kind of difference between deep and shallow canyon RH pattern for both the neighborhoods could be attributed to the fact that within a deep canyon, anthropogenic heat related discrepancies can completely change the pattern of ambient RH.

SUMMARIZING THE RESEARCH

- This is the first ENVI-met study conducted in Indian mixed-use neighborhoods characterized by complex geometric elements such as presence of elevated vehicular freeway or flyover, large rivers, and temporary encroachments.
- Previous studies have mostly catered to understanding impact of orientation, LCZ based microclimatic assessment and various mitigation measures predominantly for residential neighborhoods.
- We performed a robust validation with respect to Ta, Tmrt as well as RH.
- To our knowledge, this is the first study to validate ability of ENVI-met to predict RH in an Indian context.

Future Scope

- A first step towards analyzing the efficiency of ENVI-met for modeling high density complex urban neighborhoods with heterogenous morphological characteristics in Indian context.
- Grid size and time-step wise sensitivity analysis to assess the model performance.
- Sensitivity of four turbulence models can be checked, hourly forcing of wind speed can be input and validated to test model performance.
- ENVI-met has been widely used to compare heat mitigation strategies. Efficiency of various thermal comfort improvement policy guidelines and frameworks can be evaluated in order to minimize heat hazards.

REFERENCES

- Banerjee, S., Middel, A., & Chattopadhyay, S. (2020). Outdoor thermal comfort in various microentrepreneurial settings in hot humid tropical Kolkata: Human biometeorological assessment of objective and subjective parameters. Science of the Total Environment, 721, 137741. https://doi.org/10.1016/j.scitotenv.2020.137741
- Banerjee, S., Middel, A., & Chattopadhyay, S. (2021). A regression-based three-phase approach to assess outdoor thermal comfort in informal micro-entrepreneurial settings in tropical Mumbai. International Journal of Biometeorology. https://doi.org/https://doi.org/10.1007/s00484-021-02136-7
- Baruti, M., Johansson, E., 2018. Outdoor Microclimate and People's Thermal Perceptions in Informal Settlements of Warm Humid Dar es Salaam, Tanzania.
- Chatterjee, S., Khan, A., Dinda, A., Mithun, S., Khatun, R., Akbari, H., Kusaka, H., Mitra, C., Bhatti, S.S., Doan, Q. Van, Wang, Y., 2019. Simulating micro-scale thermal interactions in different building environments for mitigating urban heat islands. Sci. Total Environ. 63, 610-631. https://doi.org/10.1016/j.scitotenv.2019.01.299
- Huttner, S. (2012). Further development and application of the 3D microclimate simulation ENVI-met. Mainz: Johannes Gutenberg-Universitat in Mainz, 147. http://ubm.opus.hbz-nrw.de/volltexte/2012/3112/
- Khalil, H.A.E.E., Ibrahim, A.K., Elgendy, N., Makhlouf, N., 2018. Could/should improving the urban climate in informal areas of fast-growing cities be an integral part of upgrading processes? Cairo case. Urban Clim. 24, 63–79. https://doi.org/10.1016/j.uclim.2018.01.007.
- Kottek, M., Grieser, J., Beck, C., Rudolf, B., Rubel, F., 2006. World map ofthe Köppen-Geiger climate classification updated. Meteorol. Zeitschrift 15, 259–263. https://doi.org/10.1127/0941-2948/2006/0130.
- Sharmin, T., Steemers, K., Matzarakis, A., 2017. Microclimatic modelling in assessing the impact of urban geometry on urban thermal environment. Sustain. Cities Soc. 34, 293–308. https://doi.org/10.1016/j.scs.2017.07.006.
- Taleghani, M., Kleerekoper, L., Tenpierik, M., Van Den Dobbelsteen, A., 2015. Outdoor thermal comfort within five different urban forms in the Netherlands. Build. Environ. 83, 65-78. https://doi.org/10.1016/j.buildenv.2014.03.014

Thank You

SUPPLEMENTARY I: RESEARCH LIMITATIONS

- The study is confined to understand <u>outdoor microclimate and thermal</u> comfort.
- No indoor spaces or temporarily indoor/transition spaces were studied in this context.
- Outdoor thermal comfort perception surveys were conducted in <u>open alleys</u>, <u>courtyards</u>, <u>verandas</u>, <u>and semi-outdoor spaces</u>.
- No anthropogenic or infrastructure related heat modelling is taken into consideration.
- Only summer and winter data have been modelled.