EGU22-3442 # A comparative study of riverine ¹³⁷Cs dynamics during high-flow events at three contaminated river catchments in Fukushima WAKIYAMA Yoshifumi^{1*}, NIIDA Takuya²,TAKATA Hyoe¹, TANIGUCHI Keisuke³, KUROSAWA Honoka⁴, FUJITA Kazuki⁵, KONOPLEV Alexei¹ ¹Institute of Environmental Radioactivity, Fukushima University, ²KANSO TECHNOS, CO., LTD., ³National Institute of Technology, Tsuyama College, ⁴Graduate school of Symbiotic System Science and Technology, Fukushima University, ⁵Fukushima Prefectural Centre for Environmental Creation #### Introduction #### **Motivations** Substantial particulate ¹³⁷Cs flux during high-flow events (e.g., Yamashiki et al., 2014; Taniguchi et al. 2019) Influences of terrestrial ¹³⁷Cs on ocean (e.g., Takata et al. 2021) Possible effect of land use composition (e.g., Laceby et al. 2016) Limited observation in downstream sites Comparative study at three coastal catchments during high flow events Factors controlling riverine ¹³⁷Cs concentrations Temporal variation, properties water/SS, land use effect ¹³⁷Cs flux to the ocean Particulate, dissolved, and potential desorption #### **Materials and Method** Niida river (206 km²), Ukdeo river (143 km²), Takase rivers (262 km²) Three events: One in September 2019(SEP19), Two in July 2020 (JUL20-1, -2) - Suspended solid concentration (SSC: mg L⁻¹) - ○137Cs concentration in suspended solid (Cs_{ss}: Bq kg⁻¹) - \bigcirc Stable isotope signatures ($\delta^{15}N$, $\delta^{13}C$: %) etc - \downarrow Filtration with 0.45 μ m-mesh filter - Dissolved ¹³⁷Cs concentration (Cs_{dis}: mBq L⁻¹) Sequential extraction Seawater extraction Description ratio Desorption ratio (%) ## Variations in riverine 137Cs concentrations Temporal patterns in both the Cs_{SS} and Cs_{dis} differed according to the event, even within the same river catchment. #### Variations in riverine ¹³⁷Cs concentrations Spatial variation of the ¹³⁷Cs inventory were likely reflected in the riverine ¹³⁷Cs concentrations in the studied catchments. ## Variations in riverine 137Cs concentrations Mean $\delta^{15}N$ for sediment source was derived from Laceby et al. (2016) High contribution of forested area likely increased the Cs_{ss} in the erosive rainfall event. Land use effect may depend on rainfall erosivity. ## 137Cs flux ¹³⁷Cs desorbed from suspended solid to seawater (Bq) = Particulate 137 Cs flux (Bq) \times Desorption ratio (%) The ¹³⁷Cs flux ranged from 0.33 to 19 GBq. Desorbed ¹³⁷Cs sometimes exceeded dissolved ¹³⁷Cs (0.12-6.2 times), depending on particulate ¹³⁷Cs flux. ## 137Cs flux Niida 0.01 0.0075 0.005 0.0025 0 ▲ Ukedo Takase 200 400 600 Catchment mean event R-factor (MJ mm ha⁻¹ hr⁻¹) 800 1000 Percentage of particulate ¹³⁷Cs flux to total ¹³⁷Cs in catchment R-factor yielded better reproduction of particulate ¹³⁷Cs flux than rainfall amount. Apparent catchment erodibility depended on forest cover and dam reservoir. ## R –factor in USLE (by USDA-RIST) Niida River (68% of forest cover) Takase River (83% of forest cover) Ukedo River (Dam reservoir) ### **Summary** # Factors controlling riverine ¹³⁷Cs concentration - Spatial pattern of ¹³⁷Cs inventory is likely reflected to riverine ¹³⁷Cs concentrations - Oδ¹⁵N inferred forest's contribution to elevated ¹³⁷Cs concentration in suspended solid in erosive event. ## 137Cs flux to the ocean - ○The ¹³⁷Cs flux ranged from 0.33 to 19 GBq, and rainfall erosivity index yields better estimate than rainfall amount. - ○137Cs desorption was 0.12–6.2 times the direct dissolved ¹³⁷Cs flux, depending on particulate ¹³⁷Cs flux. #### Underlining importance of catchment characteristic Supplementary information of Niida et al (2022) includes all ¹³⁷Cs concentrations, hydrochemistry and stable isotope signatures | F11 * X × | | | | | | | | | | |---|----------|---------|-------------------|--------------------|------------------------------------|--|--|---|---| | 4 | Α | В | С | D | E | F | G | Н | 1 | | 1 Table S2. Data of suspended solid concentration (SSC), 137Cs concentration in suspended solids (Csss), dissolved 137Cs concentration (Csdis), apparent distribution coefficient (Kd). | | | | | | | | | | | Riv | zer . | Event | Sample ID | | Suspended solid concentration, SSC | 137Cs concentration in suspended solid, Cs _{SS} | Dissolved 137Cs concentration, Cs _{dis} | Apparent distribution coefficient, K _d | | | 2 | , CI | Lvein | Sample 115 | (YYYY/MM/DD HH:MM) | (mg L ⁻¹) | (Bq kg ⁻¹) | (mBq L-1) | (L kg ⁻¹) | | | 3 Nii | da River | SEP-19 | ND-SEP19-1-1 | 2019/9/9 8:35 | 12.8 | 4060 | 12.0 | 338000 | | | 4 | | | ND-SEP19-1-2 | 2019/9/9 11:24 | 72.9 | 3610 | 10.0 | 361000 | | | 5 | | | ND-SEP19-1-3 | 2019/9/9 14:12 | 1260 | 7360 | 13.1 | 562000 | | | 6 | | | ND-SEP19-1-4 | 2019/9/9 16:25 | 402 | 10600 | 18.7 | 565000 | | | 7 | | | ND-SEP19-1-5 | 2019/9/9 19:23 | 210 | 8580 | 21.2 | 405000 | | | 8 | | | ND-SEP19-1-6 | 2019/9/9 23:09 | 394 | 7400 | 16.2 | 457000 | | | q | | тπ эл 1 | NITS 11 II 20 1 1 | 2020/7/14 14-12 | 242 | 2700 | 0.51 | 204000 | |