EGU General Assembly

The analysis of the climate mitigation potential in terms of O_3 -Radiative Forcing from aviation NO_x using O_3 algorithmic climate change functions (aCCFs)

Pratik Rao, Feijia Yin, Volker Grewe, Hiroshi Yamashita, Patrick Jöckel, Sigrun Matthes, Mariano Mertens, and Christine Frömming

23rd - 27th May 2022

Aviation was responsible for around 5% of temperature change in 2020 [1]

ightharpoonup Aviation induced climate change includes CO₂ and **non-CO**₂ **effects** from O₃, CH₄, H₂O and contrails

- - Aviation was responsible for around 5% of temperature change in 2020 [1]
- Aviation induced climate change includes CO_2 and **non-CO**₂ **effects** from O_3 , CH_4 , H_2O and contrails
- The latter contributes to nearly 2/3 of the climate impact! [2]
- The impact depends strongly on emission location, timescale, chemical background, etc.→ **Weather** plays a large role

- Aviation was responsible for around 5% of temperature change in 2020 [1]
- Aviation induced climate change includes CO_2 and **non-CO**₂ **effects** from O_3 , CH_4 , H_2O and contrails
- The latter contributes to nearly 2/3 of the climate impact! [2]
- The impact depends strongly on emission location, timescale, chemical background, etc. → **Weather** plays a large role
- \bigstar Regions where variations are large \rightarrow climate sensitive regions

Towards climate-optimised flights

Towards climate-optimised flights

- Sensitive regions can computed by aCCFs [3], which express a relation between weather variables and estimated climate impact from aviation
 - \angle aCCFs have been derived individually for O₃ and CH₄ (from NO_x), H₂O, contrails and CO₂

Towards climate-optimised flights

- Sensitive regions can computed by aCCFs [3], which express a relation between weather variables and estimated climate impact from aviation
 - \angle aCCFs have been derived individually for O₃ and CH₄ (from NO_x), H₂O, contrails and CO₂

Focus

Evaluate the effectiveness of reducing aviation NO_x induced climate impact via O_3 formation, using O_3 aCCFs in air traffic optimisation

- ▶ Lateral re-routing: flight altitude is fixed [≈ 10.4 km]
- ightharpoonup Vertical re-routing: flight altitude is variable [pprox 8.8 to 12.5 km]

O₃ aCCFs

- ▶ O₃ production from NO_x depends on weather, solar radiation, background chemistry, etc.
- ▶ O_3 aCCFs are a function of temperature (T, [K]) and geopotential $(\phi, [m^2/s^2])$:

$$aCCF_{O_3}(T, \phi) = \beta_0 + \beta_1 T + \beta_2 \phi + \beta_3 T \phi$$

Measures the climate impact in terms of ATR20_{O3} [K/kg(NO₂)]

Simulation setup

- ► Select winter and summer day characterised by high variability of O₃ aCCFs
- ▶ Air Traffic optimisation (Europe) + chemistry-climate simulation over 4 months + compare O₃-RF [4]

Results for winter day

Winter day meteorology and O_3 aCCF value at 250 hPa

ightharpoonup Bulk of NO_x is transported towards the South and downwards

Results for winter day

► Atmospheric transport of emissions (a) lateral re-routing, (b) vertical re-routing

Results for winter day

▶ **Difference** in Ozone production for (a) lateral re-routing, (b) vertical re-routing

Results for climate impact

► Mean O₃-RF for all scenarios

Summary

- ➤ The weather situation was shown to play a major role in the climate impact of non-CO₂ effects (aviation NO_x)
- ► Climate impact of NO_x in summer was found to be larger than in winter \rightarrow matches literature
- ➤ Climate-optimised flights lead to lower O₃-RF compared to the cost-optimised flights
- ▶ Lateral re-routing for the chosen altitude leads to the least RF
- ▶ Vertical re-routing in summer shows largest mitigation potential
- ▶ O₃ aCCFs can reduce climate impact but can be improved even further

References and Acknowledgement

- [1] Grewe et al., 2021. Evaluating the climate impact of aviation emission scenarios towards the Paris agreement including COVID-19 effects.
- [2] Lee et al., 2020. The contribution of global aviation to anthropogenic climate forcing for 2000 to 2018.
- [3] van Manen et al., 2019. Algorithmic climate change functions for the use in eco-efficient flight planning.
- [4] Rao et al., 2022. Case Study for Testing the Validity of NO_x -Ozone aCCFs for Optimising Flight Trajectories

Acknowledgement: This project has received funding from European Union's Horizon 2020 Research and Innovation Programme under Grant Agreement ID: 875503. Further gratitude is expressed to other collaborators from TU Delft (NL), DLR (DE), Deep Blue (IT), Royal NLR (NL), Amigo (IT), ITU (TR), IATA (ES) and SEA (IT).

Thank you for your kind attention!

QR code for abstract